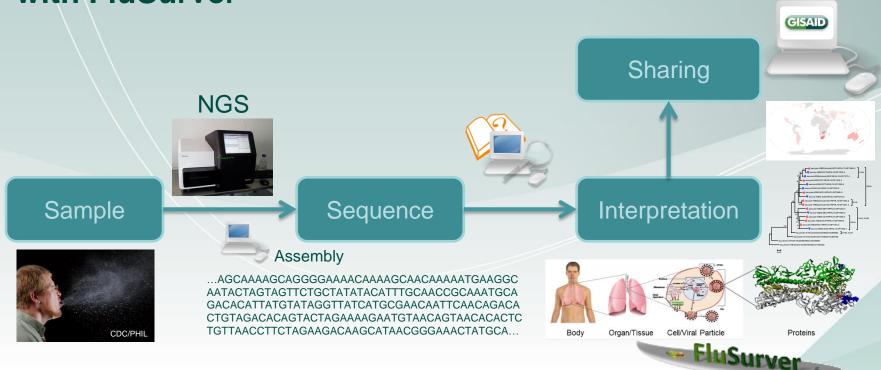


# Introduction to Mutation Interpretation with FluSurver

#### Dr. Sebastian Maurer-Stroh

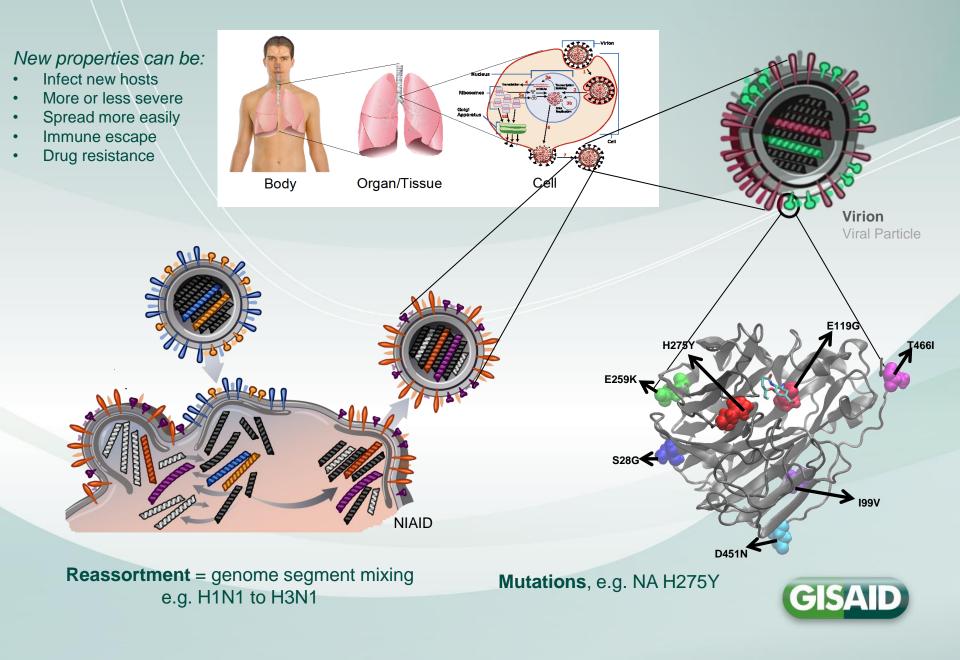

Programme Director Human Infectious Diseases, Bioinformatics Institute, A\*STAR, Singapore



Bioinformatics Institute

**GISAID Database Technical Group** 

# Making full use of influenza sequences with FluSurver



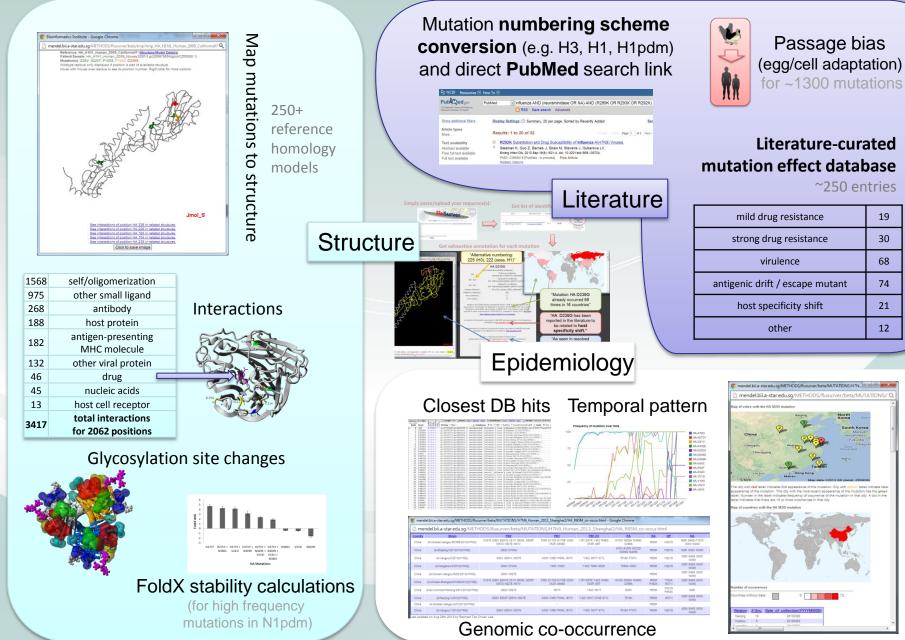

Reduced cost of and easier access to sequencing gives us:

- More sequences (also complete genomes)
- More detail of genetic evolution
- More questions on how to use/interpret/analyze sequences

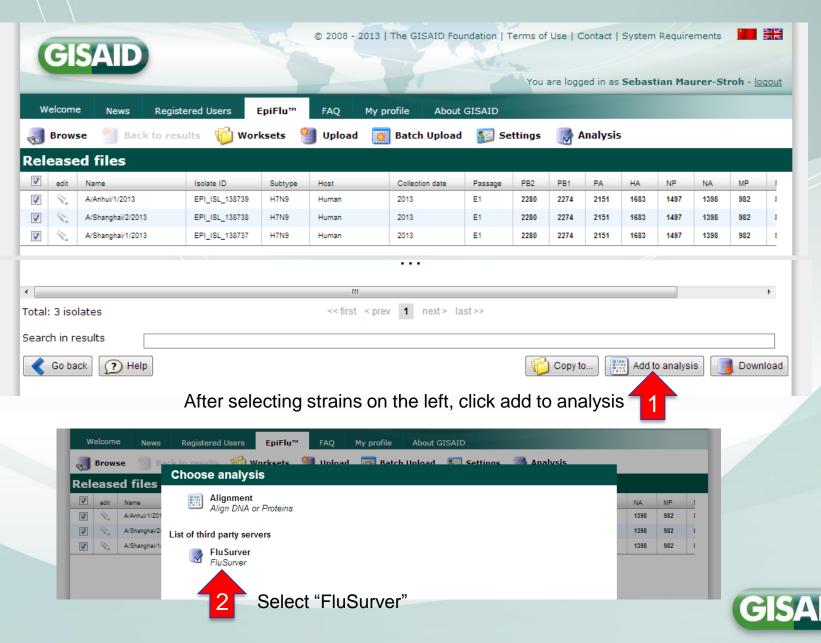


### Flu viruses evolve through Reassortment and Mutations





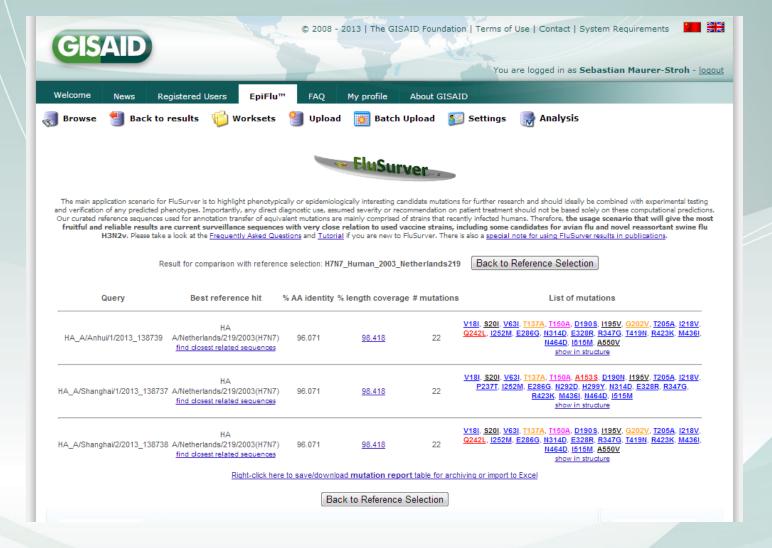

### **FluSurver for Mutation Interpretation**




~250 entries

Global occurrence

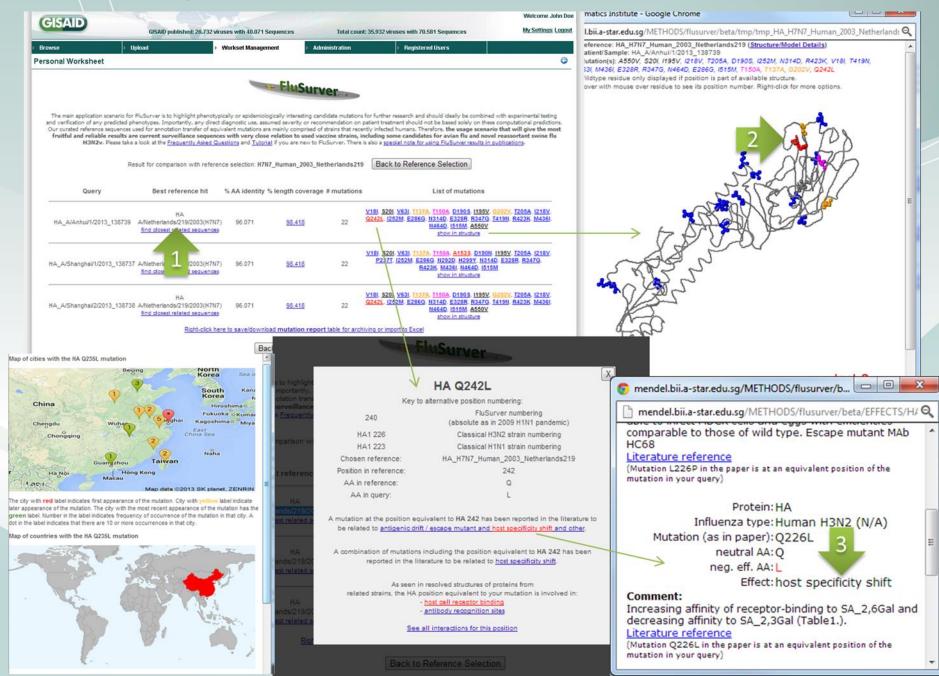



#### *First steps:* find, select and add isolates to analyze from the EpiFlu<sup>™</sup> database

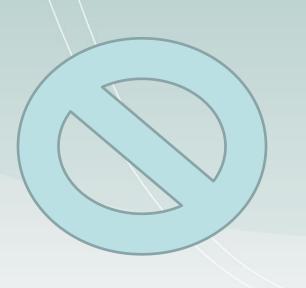


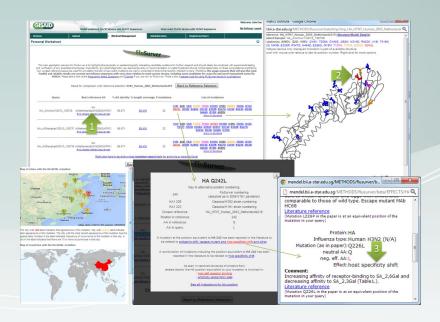
# EpiFlu<sup>™</sup> 2.0 – Analysis Tools

| CIENT                 |                    |                                |                     |                        |                    | Welcome John Doe       |
|-----------------------|--------------------|--------------------------------|---------------------|------------------------|--------------------|------------------------|
| GISAID                | GISAID             | published: 34.593 viruses with | 89.498 Sequences    | Total count: 113.361 v | My Settings Logout |                        |
| ▶ Browse              | > Upload           | ► Workset                      | Management 🛛 🕨 Adr  | ninistration           | Registered Users   |                        |
| Personal Worksh       | neet               |                                |                     |                        |                    | Ô                      |
| Virus Name            |                    |                                |                     |                        |                    |                        |
| 💢 Delete Entry        | 🕱 Clear List 🔶     | Select All 💥 Desele            | ect All             |                        |                    |                        |
| -                     | Name               | Segment                        | Segment accession # | Length                 | <b>E</b>           | Export selected        |
| A/chicken/77/J        |                    | NS                             | EPI1880             | 890                    | <u></u>            | Blast Nucleotide       |
| A/chicken/77/J        |                    | PB1                            | EPI1874             | 2274                   | 2°                 | Diast Nucleotide       |
| A/chicken/77/J        |                    | HA                             | EPI1876             | 1686                   | N (1)              | Blast Protein          |
| A/chicken/77/J        |                    | NP                             | EPI1877             | 1501                   |                    | Diddt i fotolli        |
| A/chicken/77/J        |                    | NA                             | EPI1878             | 1413                   |                    | Analyze with FluSurver |
| A/chicken/77/J        |                    | PB2                            | EPI1873             | 2280                   |                    |                        |
| A/duck/Jiangxi/       |                    | M                              | EPI1887             | 982                    |                    | Align Sequences        |
| <u>A/duck/Jiangxi</u> |                    | PA                             | EPI1883             | 2151                   |                    | View Tree              |
| A/duck/Jiangxi/       |                    | NS                             | EPI1888             | 823                    |                    | view fiee              |
| A/duck/Jiangxi        |                    | HA NP                          | EPI1884<br>EPI1885  | 1704                   |                    |                        |
| A/duck/Jiangxi/       |                    | PB1                            | EPI1882             | 1497<br>2274           |                    |                        |
| A/duck/Jiangxi        |                    | PB1<br>PB2                     | EPI1881             | 2274                   |                    |                        |
| A/duck/Jiangxi/       |                    | NA                             | EPI1886             | 1380                   |                    |                        |
| A/Galicia/1786        |                    | HA                             | EPI1907             | 1040                   |                    |                        |
| A/Hong Kong/3         |                    | PB2                            | EP1498034           | 2280                   |                    |                        |
| A/Hong Kong/3         |                    | NA                             | EP1498036           | 1401                   |                    |                        |
| A/Hong Kong/3         |                    | PB1                            | EP1498035           | 2274                   |                    |                        |
| A/Hong Kong/3         |                    | PA                             | EP1498033           | 2151                   |                    |                        |
| A/Hong Kong/3         |                    | M                              | EPI498032           | 982                    |                    |                        |
|                       | 3 5 <u>Forward</u> |                                |                     |                        |                    |                        |







For each of the query sequences, users may proceed to look at the alignment to the reference strain, get more information on each mutation, generate a structural view of all the mutations ("show in structure")...



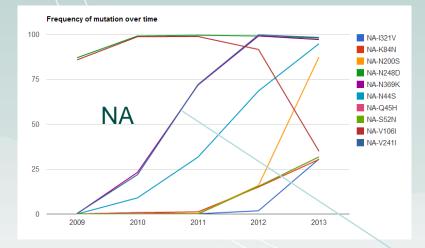

#### **Analysis – FluSurver for Mutation Interpretation**

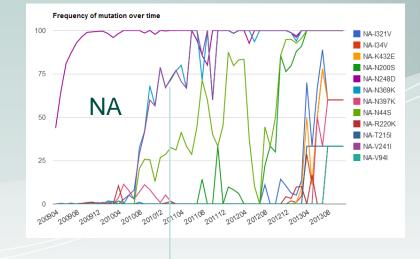


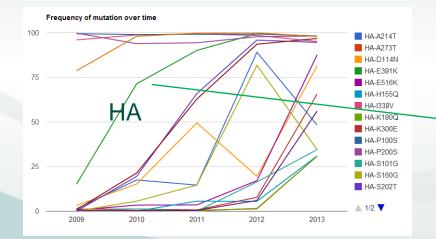
### **Analysis – FluSurver for Mutation Interpretation**






Important disclaimer:


FluSurver makes it very easy to link mutations with prior literature and potential phenotypic effects.


While we have placed great emphasis on avoiding false positive alerts and provide tutorials, one still needs to read the associated papers and interpret the provided evidence carefully to judge any effect realistically.

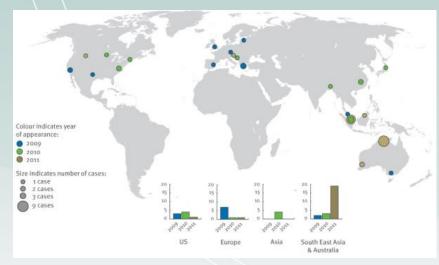


# Mutation frequency pattern highlights relevant changes

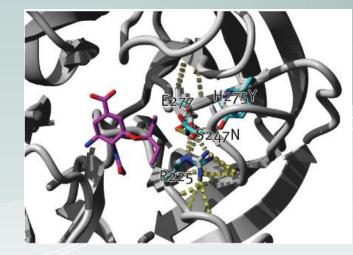







New H275Y permissive mutations Hurt *et al.* J Infect Dis. 2012 Jul 15;206(2):148-57. Butler *et al.* PLoS Pathog. 2014 Apr 3;10(4):e1004065.

Change in pH-dependency of fusion Maurer-Stroh et al. PLoS Curr. 2010 Jun 1;2:RRN1162. Cotter et al. PLoS Pathog. 2014 Jan;10(1):e1003831.



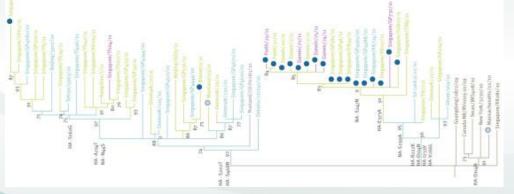

#### Example H1N1pdm in FluSurver

## New drug sensitivity altering mutation NA S247N



Global occurrence of new variant




Structural context of mutation

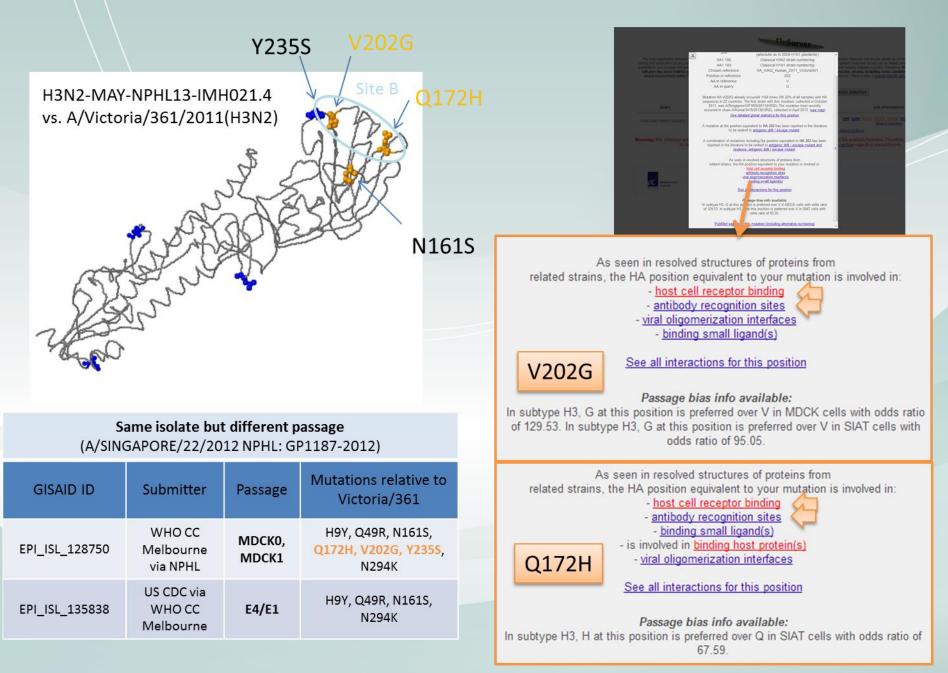
Northern Australia in early 2011.

dose of drugs still sufficient.

Found circulating in 10% of samples in Singapore and 30% of samples in

Experimentally measured increase of IC50 for Tamiflu by 6-fold and Relenza by 3-fold but **normally administered** 




Phylogenetic context of new variant

Collaboration between Bioinformatics Institute, A\*STAR with NPHL/Ministry of Health Singapore and WHO Collaborating Centre for Reference and Research on Influenza.

Euro Surveill. 2011;16(23):pii=19884.



#### Current H3N2 strains have HA passage bias mutations in antigenic sites



# FluSurver Acknowledgements

Many current and former colleagues from the A\*STAR Bioinformatics Institute (BII) contribute(d) critically to its development and maintenance, including:

**Sebastian Maurer-Stroh**, Raphael Tze Chuen Lee, Vithiagaran Gunalan, Vachiranee Limviphuvadh, Fernanda L Sirota, Biruhalem Taye, Jianmin Ma, Swe Swe Thet Paing, Narumol Doungpan, Joy Xiang and Frank Eisenhaber.

The FluSurver would be nothing without the valuable feedback and interaction with the influenza research and surveillance community, including especially and in chronological order:

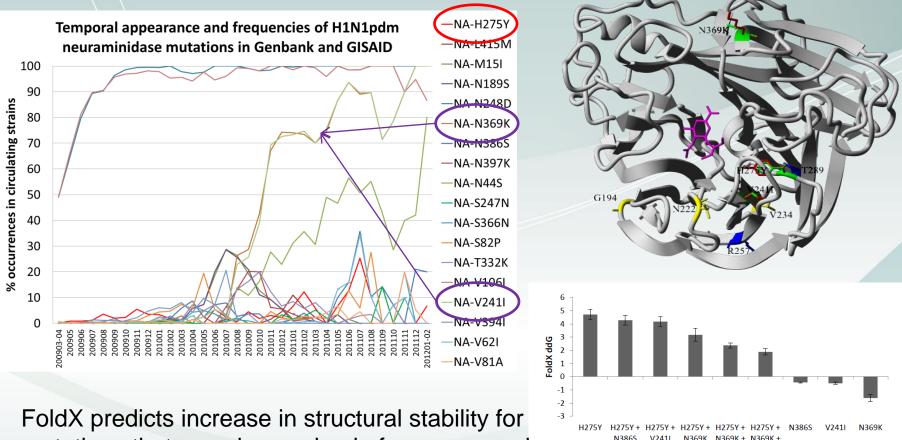
- Genome Institute of Singapore (GIS), Singapore
- INMEGEN Mexico City, Mexico
- Experimental Therapeutics Centre (ETC), Singapore
- Tan Tock Seng Hospital (TTSH), Singapore
- National Public Health Laboratory (NPHL) of the Ministry of Health, Singapore
- IAL Sao Paulo, Brazil
- WHO Collaborating Centre for Reference and Research on Influenza, Australia
- Duke-NUS Emerging Infectious Disease Programme, Singapore
- University of Melbourne, Australia
- Global Initiative for Sharing All Influenza Data (GISAID)
- Federal Office for Agriculture and Food (BLE), Germany
- Health Protection Agency of Canada

Contact: flusurver@gisaid.org



(sebastianms@bii.a-star.edu.sg)

Fishing for Flu Mutations since 2009!






Optional back-up slides for questions...

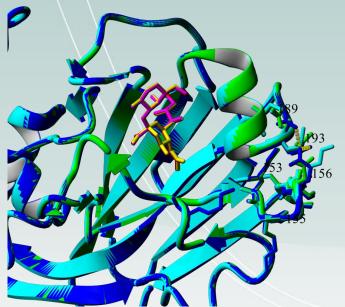


### Frequency rise points to role of permissive mutations



FoldX predicts increase in structural stability for mutations that were increasing in frequency and were fixed in Newcastle strains.

Hurt AC, Hardie K, Wilson NJ, Deng YM, Osbourn M, Leang SK, Lee RT, Iannello P, Gehrig N, Shaw R, Wark P, Caldwell N, Giv Maurer-Stroh S, Dwyer DE, Wang B, Smith DW, Levy A, Booy R, Dixit R, Merritt T, Kelso A, Dalton C, Durrheim D, Barr IG. *Characteristics of a widespread community cluster of H275Y oseltamivir-resistant A(H1N1)pdm09 influenza in Australia.* J Infect Dis. 2012 Jul 15;206(2):148-57.


# GISAID

V2411

NA Mutations

V241I + N386S

#### A "stealth" antigenic drift mutation due to passage bias



A new mutation causing vaccine escape in ferret model cannot be found by classical virus culture plus sequencing because it always reverts to wildtype under culture conditions.

HA receptor with bound ligand (pink/yellow) and passage dependent mutations with number labels

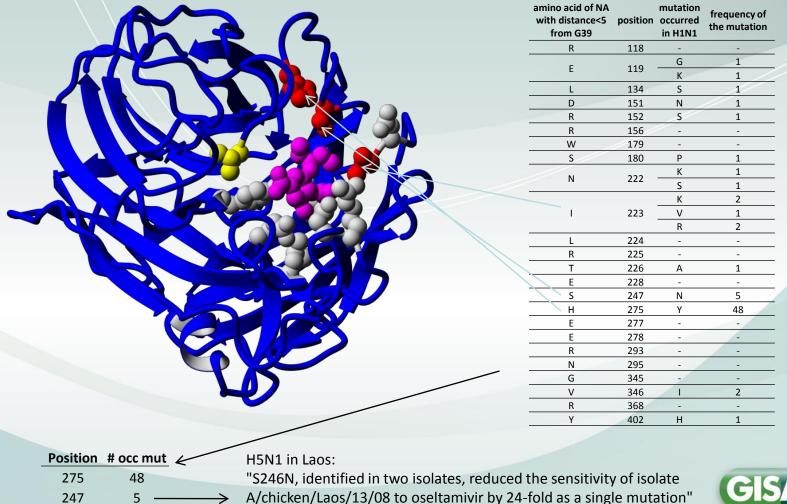
|              | Mutation | No.<br>reported* | No. isolates (mutant/<br>wildtype) <sup>b</sup> | Total frequency<br>(%) <sup>c</sup> | Egg isolate | MDCK cell<br>isolate | MDCK-SIAT1<br>cell isolate | Original<br>clinical<br>sample |
|--------------|----------|------------------|-------------------------------------------------|-------------------------------------|-------------|----------------------|----------------------------|--------------------------------|
|              | N125D    | 581              | 321/7730                                        | 3.99                                | 2.05        | 0.96                 | 0.57                       | 1.04                           |
| Analysis for | K153E    | 19               | 16/8018                                         | 0.20                                | 1.59        | 6.55                 | -                          | -                              |
| Analysis IOI | G155E    | 133              | 103/7827                                        | 1.30                                | 0.46        | 4.63                 | 0.68                       | 0.05                           |
| Ian Barr     | N156D    | 31               | 22/7980                                         | 0.27                                | -           | 4.32                 | 0.52                       | 0.22                           |
|              | N156K    | 22               | 12/7980                                         | 0.15                                |             | 0.43                 | 1.00                       | 3.28                           |
| WHO CC       | L1911    | 47               | 25/8008                                         | 0.31                                | 55.31       | 0.20                 |                            | -                              |
|              | Q223R    | 133              | 71/7966                                         | 0.88                                | 564.42      | 0.02                 | 0.00                       | 0.00                           |

Passage history Odds Ratio (mutant vs wildtype)

The odds ratio, indicating strength of association to passage history, for mutant versus wildtype virus is indicated. Mutations with <10 samples with any passage information were omitted (e.g. K156E). (-) indicates that 10-30 records with passage information were available, and no reports were indicated in this passage history. \*Occurrence of mutation in all 16740 A(H1N1)pdm09 sequences on GISAID and/or Genbank, regardless of passage history up to December 2012. <sup>b</sup>Occurrence of mutant or wildtype in all A(H1N1)pdm09 sequences on GISAID with passage history information. 5% Occurrence of mutant in all A(H1N1)pdm09 sequences on GISAID with passage history information.

doi:10.1371/journal.ppat.1003354.t004

Guarnaccia T, Carolan LA, Maurer-Stroh S, Lee RTC, et al. (2013) Antigenic Drift of the Pandemic 2009 A(H1N1) Influenza Virus in a Ferret Model. PLoS Pathog 9(5): e1003354. doi:10.1371/journal.ppat.1003354




# New drug sensitivity altering mutations

Neuraminidase and Tamiflu (pink)

223

5



J Gen Virol. 2010 Apr;91(Pt 4):949-59.

