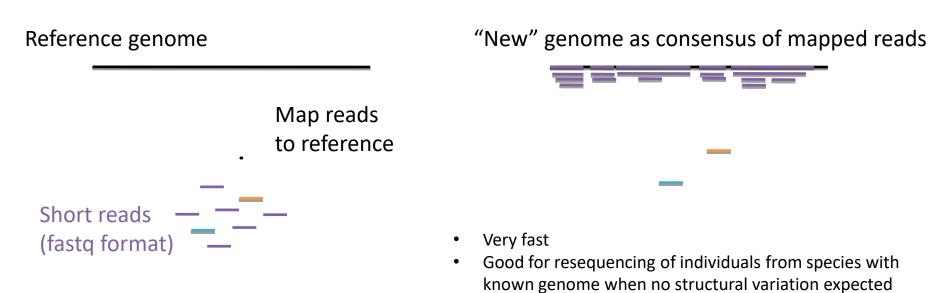
Influenza Bioinformatics: Next Generation Sequencing (NGS) I

Dimitar Kenanov Vithiagaran Gunalan Sebastian Maurer-Stroh

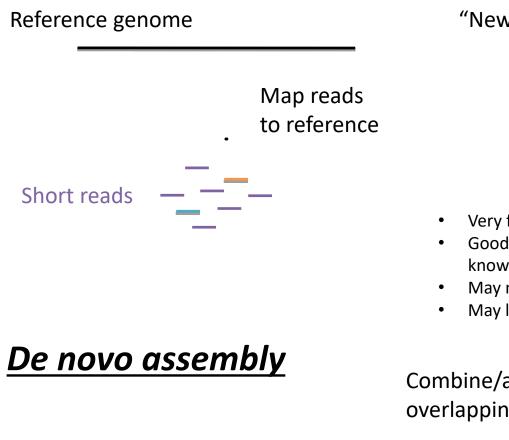
Bioinformatics Institute, Singapore



Section I

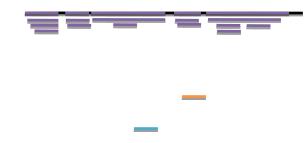
Influenza Sequence READMAPPING

Readmapping



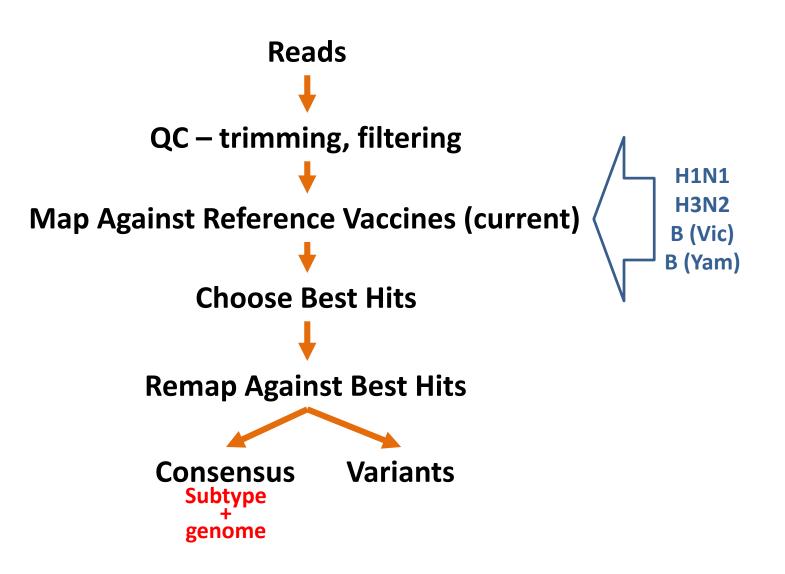
- May not cover all areas equally
- May leave out divergent regions as unmappable reads

Example tools: bwa, bowtie, smalt...


Readmapping

Short reads

"New" genome as consensus of mapped reads



- Very fast
- Good for resequencing of individuals from species with known genome when no structural variation expected
- May not cover all areas equally
- May leave out divergent regions as unmappable reads

Combine/assemble overlapping reads

- Slow
- Only option if no reference genome available
- Can capture different genome structure
- Typically creates large genome fragments (contigs) but not complete genomes

NGS Workflow

<u>Software Needed</u>

- QC for raw reads
 - FASTQC (<u>www.bioinformatics.babraham.ac.uk/projects/fastqc/</u>)
- Raw read preprocessing
 - fqtrim (ccb.jhu.edu/software/fqtrim/)
 - Trimmomatic (www.usadellab.org/cms/?page=trimmomatic)
- Assembler
 - IDBA (code.google.com/p/hku-idba/downloads/list)
 - SPAdes (<u>bioinf.spbau.ru/spades</u>)
- Sequence Aligner
 - Bowtie2 (github.com/BenLangmead/bowtie2) read aligner
 - **BWA** (<u>sourceforge.net/projects/bio-bwa/files/</u>) read aligner
 - Samtools (<u>www.htslib.org/doc/samtools.html</u>) processing alignments
 - Bedtools (github.com/arq5x/bedtools) genome coverage (best hits)
- Alignment Viewer
 - igv (software.broadinstitute.org/software/igv/)

Your USB Stick Contains:

- WSHOP2019.zip
- For today's exercise, all preinstalled

3 Directories

FLU_DATA – NGS data

bin – scripts

lib – required modules

2 files:

Install.sh – install

rakudo.deb – installer for Perl 6

Read the README.txt file before installing on your own!!

<u>Today's Exercise</u>

- 3 different samples
 - Cell-Culture Flu A (illumina PE)
 - 181_S6_L001_R*_001.fastq

• Severe Influenza in Elderly Patient (illumina PE)

- A51-INFTT-17-0683_S34_L001_R*_001.fastq
- IonTorrent (IonTorrent SE)
 - IonCode_NS16May2019_AWGS_25pM.fastq

• Open Ubuntu in Windows: •

• Navigate to the FLU_DATA directory

cd /mnt/c/Users/User/Workshop_Flu/FLU_DATA

• Inspect the files:

ls –ltrh

• To see just FastQ sample files:

ls –ltrh *.fastq

• Make a sample file

nano samp.txt

• Type in the sample IDs:

181_S6 181S6 A51-INFTT A51

tab-separated!

• Save the sample file

ctrl-o, Enter, then crtl-x

Sample File will be used to configure the script automatically Pipeline has to be run separately for SE and PE

• Create links for the pipeline, edit config file:

config.pl -s samp.txt -d `pwd` -c FLUAB_VACCREFMIX_PE.conf

• Run the pipeline for the paired-end samples:

run_fluAB.pl FLUAB_VACCREFMIX_PE

• IonTorrent SE

nano samp.txt

FLU_DATA directory

IonCode_0282 IonCode

ctrl-o, Enter, then crtl-x

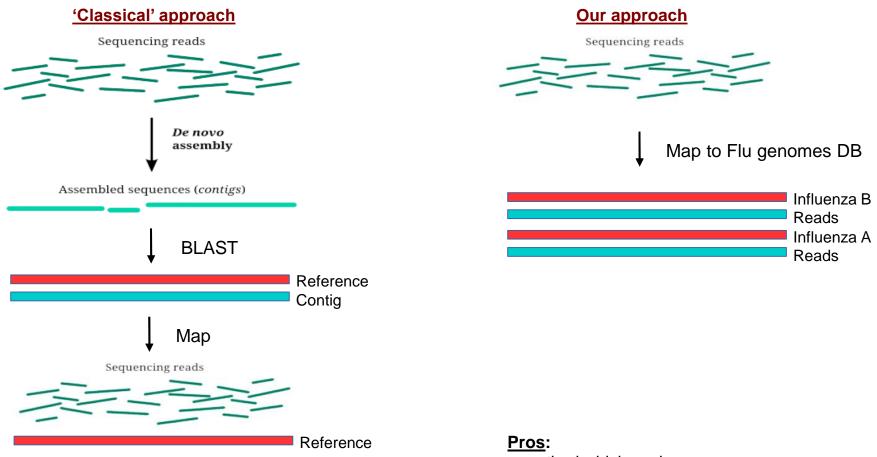
config.pl -s samp.txt -d `pwd` -c FLUAB_VACCREFMIX_SE.conf

run_fluAB.pl FLUAB_VACCREFMIX_SE

• Result Files:

181S6_MIXED_GENOME_CONSENSUS.fa & 181S6_FINAL_STATS.txt

- Open these files in Windows (Notepad, Wordpad)
- Look at each segment, which subtype?
- Are all segments accounted for?


Influenza Bioinformatics: Next Generation Sequencing (NGS) II Co-Infection

Dimitar Kenanov Vithiagaran Gunalan Sebastian Maurer-Stroh

Bioinformatics Institute, Singapore

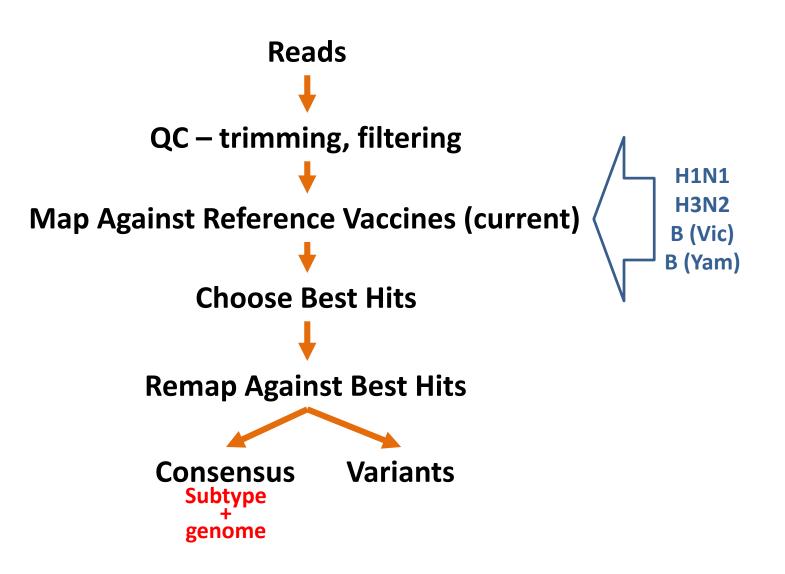
Detection of Influenza strain/s and/or co-infection using Next Generation Sequence data analysis

Pros:

- method which works

<u>Cons</u>:

- both assembly and BLAST can take long time!


- some contings might be meaningless

- method which works
- works fast, no assembly nor BLAST
- can save hours per sample
- can detect co-infection in one step

Cons:

- must prepare the DB containing Influenza genomes beforehand

NGS Workflow

• Open Ubuntu in Windows: •

• Navigate to the FLU_DATA directory

cd /mnt/c/Users/User/Workshop_Flu/FLU_DATA

• List FastQ sample files:

ls –ltrh *.fastq

SRR1928163_R1.fastq SRR1928163_R2.fastq Clinical Sample, Thailand, 2012

(Rutvisuttinunt et al, Journal of Clinical Virology 2015)

<u> Today's Exercise (con't)</u>

• Remove old logfile:

rm FLUAB_VACCREFMIX_PE.log

• Similar commands as yesterday:

nano coinfect.txt SRR1928<tab>SRR ctrl-o, Enter, then crtl-x

config.pl -s coinfect.txt -d `pwd` -c FLUAB_VACCREFMIX_PE.conf run_fluAB.pl FLUAB_VACCREFMIX_PE

Today's Exercise

• Result File: *SRR_FINAL_STATS.txt*

FRAG	VTYPE1	VTYPE2	MREAD1	MREAD2	DMR	PCF1	PCF2
HA	H1	HØ	42	24	18	91.67	75.14
MP	H1N1	HØNØ	38	20	18	79.54	83.97
NA	N1	NØ	19	21	2	71.04	74.28
NP	H1N1	HØNØ	46	36	10	81.62	94.00
NS	H1N1	HØNØ	23	28	5	86.13	91.37
PA	H1N1	HØNØ	49	36	13	86.59	77.11
PB1	H1N1	HØNØ	53	30	23	85.49	75.48
PB2	H1N1	HØNØ	72	33	39	96.89	65.67

- VTYPE1 & VTYPE2 are Virus Types
- HONO is Flu B!
- PCF1 & PCF2 are percent coverage

We have a Co-Infection

Today's Exercise

• Result File: SRR_FINAL_STATS.txt

FRAG	PID1	PID2	VTEMPL1 VTEMPL2
HA	98.32	98.65	H1N1:A/Brisbane/02/2018 H0N0:B/Colorado/06/2017
MP	99.50	98.76	H1N1:A/Brisbane/02/2018 H0N0:B/Colorado/06/2017
NA	99.31	97.92	H1N1:A/Brisbane/02/2018 H0N0:B/Colorado/06/2017
NP	99.68	98.56	H1N1:A/Brisbane/02/2018 H0N0:B/Phuket/3073/2013
NS	96.34	98.37	H1N1:A/Brisbane/02/2018 H0N0:B/Colorado/06/2017
PA	99.16	99.83	H1N1:A/Brisbane/02/2018 H0N0:B/Colorado/06/2017
PB1	99.39	99.24	H1N1:A/Brisbane/02/2018 H0N0:B/Phuket/3073/2013
PB2	98.58	99.34	H1N1:A/Brisbane/02/2018 H0N0:B/Phuket/3073/2013

- H1N1 and Flu B coinfection
- HA/NA of B virus are from Victoria lineage
- PID1 and PID2 are percent identity to reference

