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Abstract

Background

Protein sequence similarities to any types of non-globular segnieailed coils, low
complexity regions, transmembrane regions, long loops, etc. whieee positional sequen¢e
conservation is the result of a very simple, physically iedupattern or rather integtal
sequence properties are critical) are pertinent sources $tak@n homologies. Regretfully,
these considerations regularly escape attention in large-sgadaton studies since, often,
there is no substitute to manual handling of these cases. Quatitdtieria are required 1o
suppress events of function annotation transfer as a result of false homologgnasssy




Results

The sequence homology concept is based on the similarity complagisezen the structurgl
elements, the basic building blocks for conferring the overalldbl protein. We propose [to
dissect the total similarity score into fold-critical and othemaining contributions and
suggest that, for a valid homology statement, the fold-relevané somtribution should at
least be significant on its own. As part of the article, we provide DissectHMMER
software program for dissecting HMMERZ2/3 scores into segmemifgpcontributions. We
show that DissectHMMER reproduces HMMERZ2/3 scores with sufi@ecuracy and that
it is useful in automated decisions about homology for instructigaesee examples. To
generalize the dissection concept for cases without 3D stuatfmrmation, we find that g
dissection based on alignment quality is an appropriate surrodgeapproach was applied
to a large-scale study of SMART and PFAM domains in the spiaseed sequences and in
the space of UniProt/SwissProt.

Conclusions

Sequence similarity core dissection with regard to fold-ctitemad other contributions
systematically suppresses false hits and, additionally, recprar®usly obscured homology
relationships such as the one between aquaporins and formate/@itrijgatters that, so far,
was only supported by structure comparison.

Keywords

Sequence homology, Protein domain library, Hidden Markov model, Sequence similarity
search, Non-globular protein sequence segment, Automated protein function annotation,
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Background

The modus operandi of the modern day sequence homology concept [1,2] is founded on tw
inductively proven implications: (i) the inference of evolutionarytdms from sets of
homologous protein sequences (e.g. 1964, fibrinopeptides [3]; 1967, cytochri@gfeta

build believable phylogenetic trees [5,6]; (ii) the inference of dlogy for functionally
uncharacterized sequences with high sequence similarity to protgtinscharacterized
structure and/or function through the trinity of sequence-strutinction relationship (e.g.,

in 1967, lactalbumin model was built using the X-ray coordinateszotyme where the two
sequences are concluded to be homologous for being 35% identical [7]; irnh§&@enin

is homologous to pancreatic ribonuclease where the X-ray strudtdine t¢atter is known
[8,9]).

In both proofs, there are some crucial, yet problematic assumptions Ifil@he first
implication, it requires the antecedent that the sequences aredgow®l(the event of
common evolutionary origin p), then, as a consequence, the sequencepeatecexo be
high in similarity (event q; thus, we have —. q). Whereas this first implication appears

quite acceptable (as well as the contrapositive fergn_, - p, low sequence similarity

would rather imply absence of homology though evolution might have dessesgience
similarity), the second one is by far not obvious. In the proof of tb@enseimplication where



structure/function similarity is concluded from high sequence aiityil (actually q - p),

the conserved key amino acids in the uncharacterized sequercmétuding similarity to
the structure/function of the well-studied protein need to be thosecdhaspond to the
hydrophobic patterns responsible for the 3D structure formation anedigeies critical for
binding/catalysis/etc. To note, in both cases of inductive proofs, theinsainder scrutiny
were soluble, globular proteins of limited size without non-globular segments.

Thus, homology has the precise meaning of “having a common evolutiongny’ druit it
also carries the loose meaning of “possessing sequence similariging matched”. In
addition, homology between sequences is always a hypothesis whilarisy, being a
measurable fact, can be attributed to either chance, convergent@volutommon ancestry
[11-13]. In other words, high sequence similarity is a necessaipdufticient condition for
concluding homology.

Fortunately, sequence similarity by chance can be eliminatedtingent statistical criteria
like E-value cutoffs in Blast [14] or HMMER-based [15,16] sequencekes. Nevertheless,
the statistical cutoff does not help in reversing the conditiontgrsentp -, q into q - p

since the issue of distinguishing between convergent evolution and commotnyaacesig
hits of high similarity is non-trivial. As a guide, similaeg to any types of non-globular
segments (coiled coils, low complexity regions, transmembrag®ns, long loops, etc.
where either positional sequence conservation is the result ofyasweple, physically
induced pattern or rather integral sequence properties a@lfrdare pertinent sources for
mistaken homologies [10,17-19]. Although this issue has been mentioned evdy woek
[2], regretfully, these considerations regularly escape attenti large-scale annotation
studies since, often, there is nothing to substitute manual handling of these casewti@eanti
criteria are required to suppress events of function annotatiorfetraass a result of false
homology assignments. Our previous work has shown that the exclusion of undesirable signa
peptides (SPs) and simple transmembrane helices (TMs) in rprdd@nain models can
suppress many unrelated sequence hits and even reveal true homdlagiegherwise,
would have disappeared in the noise [10,19-21].

Standard alignment tools (e.g. BLAST [14], HMMER [15,16,22]) and domhairarles (e.g.
SMART [23,24], Pfam [25,26]) have become the obligatory components of madern-
day automated annotation pipelines for detecting homology and, hemaiertthe functions
of many unknown sequences accumulating in the relentlessly groegugrsce databases.
But these automated packages operate strictly in the simitgéce with preset score or,
equivalently, E-value cutoffs. Thus, statistically significantilsirities of any aligned pieces
following as the program outputs are declared as homologies widnoutalternative
consideration of convergence cases. The latter opergtionp is a non-equivalent converse

statement of the original proop -, q. Indeed, this is the bane of current sequence search

approaches that, frequently, lead to wrongful protein function predsctis annotations,
especially when one attempts to extrapolate very deep into sequence space [27-29].

To alleviate the abovementioned issue, we reiterate that the working principlesefjtrence
homology concept is based on the similarity comparison between tlbtusat elements, the
basic building blocks for conferring the overall fold of a protelmcl in turn characterizes
its biological function [30]. To note, the issue of alignment segmentatto blocks of
higher quality more relevant for structure, fold and function conserva#isrbeen discussed
widely in context of multiple alignment generation, fold recognitmal threading [31-34].



Therefore, a viable approach for improving the existing sequenaghesas to dissect each
total alignment into two types of segments. The first classumpgestive of structured,
essential components providing a conserved, complex hydrophobic/hydroplgliense
pattern (termed “fold-relevant”, “fold-critical” or *“structured’segments) possibly
complemented by further, function-critical positions. The other growgegiments includes
all types of non-globular segments, very long loops and other elamsran 3D structures,
etc. that are not under the same fold/function conservation evolutionasupe(termed
“remnant” segments) [17]. The purpose is to independently re-evahatespective two
score sums for statistical significance, subsequently. As assw@ge condition to be
considered as a valid hit, the total score of fold segments shoudsl b& more statistically
significant than the score sum of remnant segments or, minjrballgtatistically significant
on its own.

To further emphasize, the concept of a globular domain has a deemg-ramiton where it
implies a sequence segment (or several of those, a domain daoeseddb be contiguous)
having an independent tertiary structure (i.e., an autonomous hydrophadicitctoids and
melts autonomously. Its sequence evolves as a unit in phylogeny [@linsettling thing is
that a sizeable number of domain models in protein domain libraries offpresent
something else, not a globular domain in the sense as described &beveodel might
consist of several globular domains or contain non-globular additions. Bi@cgequence
homology-based annotation transfer in the case of low sequence idergfiplicable only
for the single globular domain, some type of model dissection bedatnés/ely important.
One can either go via the work-intensive route of creating neweekary domain model
libraries or, alternatively, follow the path of score dissectiath wegard to the contributing
sequence segments. Generally speaking, the idea of scordidiiss®enore generic and is
applicable to any existing sequence-based methods (whetherbBé&est [14], HMMER-
based [15,16,22] or profile-profile-based [35,36]) as long as one can recbristeuc
alignment scores from the various parameterization of the safyohthms. In addition,
score dissection does not require the original algorithms to be modified.

In this work, we achieved four main objectives. First, we createdlgorithm and the
software tool DissectHMMER (provided as supplement to this M [8@} can re-compute
the scores of HMMER2 and HMMERS3 and assign the respective cdraribuo predefined
guery — domain model alignment segments. We were able to achieveggpdication of the

log-odd scores/E-values generated by both HMMER2 and HMMERS3 adio® aseed

sequences in SMART and Pfam domains. Second, we show the usebfiteéssool in case

studies where dissecting the alignment scores into fold-crdicdl remnant contributions
(using PDB/DSSP information) enables us to identify false thtt are statistically
significant for the total HMM model and, at the same time,caeld elucidate previously
insignificant true hits among the truly false ones.

Third, to generalize the dissection framework to domains withoB/BPSSP representation,
the quality score based on alignment quality was introduced. GB850EMART and 5876
Pfam domains with structures, 537 SMART and 4771 Pfam domains were foune t
enriched with structural residues in their high-quality segméihis. was more than 80% of
the statistically testable cases. Thus, the quality scdrestifiable surrogate for estimating
fold-related and remnant segments in domain models. Importantly,nithisimilar criteria
can be applied to segmenting HMM models in domain libraries withawng the domain
alignments to be re-edited or the HMMER searches to be rerun.



Finally, the application of the dissection framework (using quaditgre) on the seed
alignments of SMART and Pfam domains gave an average positive camuornddes of
almost 100% and a negative one of less than 1%. The latter inffateimost all of the seed
sequences were recognized correctly as true hits. Meanwhil@igbection of alignment
results from searches against the UniProt/SwissProt for ®leeRT and Pfam domains
returned average false-positive rates of less than 1% but aviatag-negative (FN) rates of
7.63% (SMART) and 4.86% (Pfam). The latter presents an opportuniggdear previously
obscured homologous relationship between the FN hits and its associataih doodel.
Filtering for domain models that have exceptionally high errosralt® allows finding those
cases where reconsidering the seed alignment might be useful.

Results

Methodology for the reconstruction of HMMER2 and HMMERS scores

In the current implementation of the HMMER packages (HMMER?2 [1588] HMMER3

[16,39]), a single, total log-odd score is returned for each domain-torsmgaéignment.

Fundamentally, each score is composed of two types of contributi@gositional scores
(made between the HMMER emitted sequence and the hit sequenceheapdsition-

invariant scores (Figure 1 designed after Figure one in [39]).

Figure 1 Scheme of an HMM protein domain modelThis figure is adapted after Figure
one in [39]. Blue lines show transitions for which local model parameters are netreelby
hmmconvert for HMMERS.

The positional scores are composed from a series of emissieacfastate; e.g. M1/D1/11)
scores and transition (state-to-state; e.g. M1- > 11, M1- >3dd@)es where M/D/I are match,
delete and insert states. In the case of the invariant sabess account for the fixed
transition entry scores (e.g. N- > B, B- > M) and exit sc§ds> E, E- > C) for each
domain-to-sequence alignment. These are added to the positional sapvesthe final log-
odd score of the alignment. As a rule, these positional and positionamvadmponents are
retrievable from the respective HMM model files provided with donhidraries. Then, the
reconstruction of the HMMER scores follows the straightforwaittiraetic computations as
described in equation (1) (see Methods).

In fact, the score reconstruction has already been applied on HRAMftocal (align a
complete model to a subsequence) and global (align a complete tnaldélll sequence)
outputs in one of our earlier works [10]. Therefore, the score recotistrpcocedure should
logically be directly applicable to the HMMER3 domain-to-sequence aligrement

However, two issues ensue to complicate the straightforward procddige the current
implementation of HMMER3 [39] lacks support of the glocal/globafrdeanode. Hence,
local alignments are to be expected since there is no wajde glocal/global alignments.
For the cases of seed sequences that are closely relateddtortams, the local alignments
will somewhat resemble the glocal/global alignment generatedHRWWERZ2 and the
HMMER2 score reconstruction can still achieve good replication se®iit for many cases
of fragmented local alignments, their reconstruction will have pessision in comparison
due to the following issues.



This problem stems from the exclusion of certain invariant sparameters during the
conversion of HMMER3 model files to HMMER2 format. Regretfully, dwnversion is
necessary to export the HMMER3 null model parameters (as pateofog-odd score
parameters) since they are embedded in the HMMER3 program kedsdond major issue.
In contrast, the HMMERZ2 null model parameters are already eaptartheir model files. To
note, the HMMER3 software suite only allows for model conversion l{mmanconvert -2)
from the HMMER3 local model to the HMMERZ2 glocal/global model.Ha process, only
the first HMMER state (B- > Iy] B- > Dy; see Figure 1) and last stated E, Dx- > E; see
Figure 1) were kept while the other transition log-odd scaegs B- > M. k.1 shown by blue
lines in Figure 1) were excluded from the converted HMMER3 moitkd &ince these
parameters are not part of a global model. Therefore, the teadin of HMMERS local
alignment score is bound to suffer some estimation errors inheder@l{o the unavailability
of these parameters for the straightforward summing.

In hindsight though, the estimation is not detrimental to the ovacaliracy of HMMERS3
score reconstruction as demonstrated by the subsequent sectiam fdicisonly slightly less
accurate than the HMMER2 reconstruction. Only in cases wherg!IEERB returns heavily
fragmented alignments, the reconstruction error becomes noécgahlit is still sufficiently
small to not interfere in the significance analysis of the segmental sebscor

In this work, a program — DissectHMMER, was written to complgereconstructed score
relative to pre-defined alignment segments using the alignment{#tdd output) and the
HMM model file as inputs independent on the HMMER suite version udeat @). The
algorithmic detail is described in the Methods section. The cquevwided as Additional file
1 (as zip archive and at the accompanying WWW site [37]).

Reproducibility and error estimation of the reconstucted HMMER log odd
scores

To summarize, the score calculation in the various HMMER versions is a caegblioatine
with some parts not explicitly documented in the literature. Besatirithmic assumptions,
numerical issues such as rounding errors also play a role. Thaanbt be expected that the
reconstructed scores exactly match the scores reported byBfRViMLt it is close enough for
the purpose of reconstructing the segmental contributions to the total score.

To test the score reconstruction workflow, the seed alignmentsSMART version 6 and
Pfam release 27 were used. In comparison to SMART, the cuifiaant IPrary is about 12
times larger and, hence, the rigor of the scores reproductionrubaseing tested in this
case. In total, 735 SMART domains (excluding 73 domains with lessbteard sequences)
and 12121 Pfam domains (excluding 2711 domains with less than 5 seed sg@quenees
examined.

For each domain alignment, the HMMER model is first built (usingnbuild with null2
option off) and, then, it is searched against (using hmmsearch -FSathe set of seed
sequences. For each seed sequence, the alignments reported areecotiaeldits. By this
constraint, both HMMER2 and HMMER3 share the same search space acd, he
alignments generated by both are expected to be similar (fiextical). Next, the HMMER
log-odd scores for the total alignment were reconstructed asitmEbdin Methods (see
equations (1 and 2)).



Once this computation was completed for all seed sequences ot dpmain, linear
regression analysis was performed against the originaésdsee equations (3 and 4) in

Methods). The regression analysis output, in terms of slq@a dnd coefficient of

determination (2?) as goodness of fit, is plotted for both SMART (version 6) and Pfam
(release 27) domains in Figure 2. Figure 2A and B depict theghashs of the slopeﬁ for

the original versus reconstructed scores for SMART domains atddufor HMMER2 and
HMMERS, respectively, while Figure 2C and D depict the histograintise slopegé for the
Pfam domains. Generally speaking, the HMMERZ2 results exhildit fl@groducibility at an
average Ié with an ideal value of 1.000 (SMART/Pfam) with small standardatiewis of
0.001 (SMART) and 0.002 (Pfam). In comparison, HMMERS3 results also sho#y though
slightly worse reproducibility with averag,é of 1.015 £ 0.017 (SMART) and 1.017 + 0.013
(Pfam).

Figure 2 Regression analysis output (slope;g and coefficient of determinationr?) for
both SMART (version 6) and Pfam (release 27) domainkigureA andB depict the

histograms of the slope@ for the original versus reconstructed scores for SMART domains
calculated for HMMER2 and HMMERS respectively while Fig@randD depict the

histograms of the slope@ for the Pfam domains. The HMMER2 results exhibit high
reproducibility at an averag@ of 1.000 + 0.001 (SMART) and 1.000 + 0.002 (Pfam) while

HMMERS3 results also show good, though slightly worse reproducibility with aveﬁagfa
1.015 £ 0.017 (SMART) and 1.017 £ 0.013 (Pfam). Figiregs, G andH shows the
corresponding histograms for the goodness of fit, in termt$ aBimilarly, the HMMER2
reconstruction exhibits excellent fit at an averagef 1.000 + 0.003 (SMART) and 1.000 +
0.007 (Pfam). HMMERS reconstruction closely followed at an averags 0.997

(SMART) and 0.998 (Pfam) over a slightly larger variation of 0.007 (SMART/Pfam).

hindsight, all values of andr? converges to one with little variation and this implies that
the reconstruction workflow for HMMER?2/3 scores are highly reproducible.

The goodness of fit, in terms of coefficient of determinatid), for the original versus
reconstructed HMMER2 and HMMER3 scores are depicted in FigureF2E> and H
respectively as histograms. Again, the HMMER2 reconstructiorbgstexcellent fit at an
averager? of 1.000 (SMART/Pfam) and small standard deviations of 0.003 (SMAR®)
0.007 (Pfam). HMMERS3 reconstruction closely followed at an avarage0.997 (SMART)
and 0.998 (Pfam) over a slightly larger variation of 0.007 (SMART/Rfaimlen together,

the general trend where all values@fandr2 converges to one with little variation, implies

that the reconstruction workflow for HMMERZ2/3 scores are highiloéd and reproducible.
The reconstruction works well for the relatively small SMARFary as well as for the huge
Pfam library.

Next, the relative error estimates per SMART/Pfam domaire we@&amined (Figure 3, see
equations (5, 6, 7 and 8) in Methods). To note, the scores generated for \&m®ols
sequences of one domain are quite similar to each other in thefcA8#MER2, mostly,

because the glocal mode enforces alignments of similar lemgthe lcase of HMMERS, the



alignments are often (almost) identical with those in the HMIIERSe. Yet, the alignments
for a large number of many other seed sequences are heagdnted. Since we are
interested in assessing the error of reconstruction over thesegpative domain score and
not over each individual alignment fragment where, especially, gignasent of gap scores
to the individual fragment scores by HMMERS is difficult to regoag discussed above, we
rather compare the total error of reconstruction for the seed sEguedomain alignment
with the sum of scores for all the seed — domain alignment fratggmeported. Therefore, we
estimate the error for each domain as ratio between the sunviafiales between original
and reconstructed score for each seed sequence on the one hand sumoh thf original
scores for each seed sequence on the other hand. Figure 3A, Basti@y the histograms
of the relative errors for the HMMER2 and HMMERS results andSNMART and PFAM
domain databases, respectively. The majority of the reconstructams &y HMMER2 are
well below the satisfactory 0.01 margin (or 1% of the averagd score per domain) and at
an average of 0.0028 (SMART) and 0.0025 (Pfam) as depicted byrtiemlvdashed lines.
Similarly, the reconstruction errors attributed by HMMER3 aedl Wwelow the 0.05 line (or
5% of the average seed score per domain). The average relatigeager@bout 0.0049 and
0.0010 for SMART and Pfam domains, respectively (see vertical dédskell As a general
trend, the relative errors tend being dwarfed by their respediveain-wise alignment
scores for all seed sequences.

Figure 3 Relative error estimates per SMART/Pfam domainFiguresA, B andC, D show

the histograms of the relative errors for the HMMER2 and HMMER3 results algMAKRT

and PFAM domain databases respectively. The average reconstructrerbgitMMER?2

were 0.0028 (SMART) and 0.0025 (Pfam) and mostly well below the 0.01 margin (or 1% of
the average seed score per domain) as depicted by the vertical dashedkdavasel the

average reconstruction errors attributed by HMMERS3 are 0.0049 and 0.0010 for SMART and
Pfam domains respectively (See vertical dashed lines). They are wellthel®.05 line (or

5% of the average seed score per domain). Generally speaking, the relats/éeed being
dwarfed by their respective domain-wise alignment scores for all seeeihseg.

Taken together, the results show that the reconstruction recoversginalascore within a
few percent at worst. Since we wish to make a qualitative cooclwghether a certain
alignment segment of the total query sequence — domain alignnadelsa substantial or
even overwhelming contribution to the total score, the reconstructymmitam with all
errors taken into consideration appears well suited for the purpose.

This large scale study of seed sequence scores also allowmramgnsome aspects of
HMMER2 and HMMER3 program behaviors. Figure 4 shows the HMMERZ2users
HMMERS score averaged over all seed sequences for each domasal pootll domains
(Figure 4A SMART, Figure 4B Pfam). As a trend, the HMMERG@res (y-axis) are clearly
smaller than the HMMER2 scores (x-axis). They are stroogtyelated (the goodness of fit
r?is 0.9692 for y = 0.6785x in the case of SMART and 0.9867 for y = 0.6629x ins®ta
Pfam) but not equivalent. To note, this work was not planned as a cogatady between
the two tools and we strived as much as possible to focus on conclugipasted by either
program.

Figure 4 over all seed sequences) for SMART (version 6) and Pfam (release 27)
HMMER2 versus HMMERS3 average domain score (averaged over all seed sequesice
for SMART (version 6) and Pfam (release 27)igureA shows the comparison of
HMMER2 versus HMMERS3 domain scores for 735 (out of 808) SMART domains while



FigureB shows the comparison for 12121 (out of 14831) Pfam domains. As a trend, the
HMMERS3 scores are smaller than the HMMER2 scores but strongly codréllaéegoodness

of fit r? is 0.9692 for y = 0.6785x in the case of SMART and 0.9867 for y = 0.6629x in the
case of Pfam).

Dissection of sequence alignments accentuates hoowy evidence in true hits
while deemphasizes false hits

The idea of dissecting a HMM score into several segmentdanfer alignment stems from
the observation that the influence of well conserved, truly homologaysnaint segments
on the score can be overwhelmed by score contribution from spurionsafhig extensions.
In our previous work [10,19], we have shown that the score enhancementsifranmgahon-
relevant SP/TM hydrophobic stretches can create the appeacnbgh scores and
significant E-values of alignments between unrelated sequences.

At the same time, it is well accepted that structural efgmare the basic building blocks for
conferring the overall fold of a protein which in turn characteritg biological function.
Therefore, for the purpose of inferring homology, one should evathatescore of the
structural, fold-relevant segments independently from the sce@ciaged with remnant
segments. Figure 5 shows an example of such a segmentationttiigblidpe fold-relevant
alignment pieces (based on the seed alignment of PF05134.8 T2Stherfare, as a
necessary condition to be considered as a true hit, the strutidlotaielevant score should
either be more statistically significant than the scoreotber segments or, at least, it should
be statistically significant on its own. The postmortem dissectf the alignment can
provide additional insights beyond what a standard single total Beeakie could, as
illustrated through a selected, validated set of 13 hits (sortteef are true and and others
are actually false) found by 8 Pfam domains (PF01298.13 Lipoprotein 5, PFO481H-8

1 N, PF05134.8 T2SL, PF09110.6 HAND and PF10390.4 ELL, PF00004.24 AAA,
PF00106.20 adh_short and PF01226.12 Form_Nir_trans) as listed in Table 1.

Figure 5 Segmentation by DSSP and by quality score for an example alignmeht.e

show the seed alignment of PF05134.8 (T2SL, type Il secretion system proteitol).tBe
alignment, two segmentations are presented. Red and green segment in the upger line ar
assigned labels “H, B, E, G, I, T, S” the DSSP [40] file for the structure 1 W9in (chand
together represent the respective fold-relevant part. In the lowehensegmentation is

based on alignment quality giving rise to black (fold-relevant) and greynémet) segments.




Table 1 Examples of validated false hits from 5 Pfam domains (PF01298.13 Lipoprotein5, ®814.8 HNF-1 N, PF05134.8 T2SL,
PF09110.6 HAND, PF10390.4 ELL) and validated true hits from 3 Pfam domains (PFO00004.2AA PF00106.20 adh_short, PF01226.12

Form_Nir_trans)

Domain name HMMER version Total score (E- Fold-critical score  Remnant score (E- Ratio of E-value;:
value) (E-valuey) valuey) E-value,
PF01298.13 Lipoprotein5 1.sp|O60841|IF2P_HUMAN (@&wyhktic translational HMMER2 -183.8 (3.1) -164.6 (7.6e-1) -7.6 (6.7e-6) Jel+ 5
initialization factor 5B) HMMER3 30.1(6.7e-8)  -2.9 (5.8e +4) 22.8(1.0e-3) 58e+7
Domain length: 979 2.sp|Q05D44|IF2P_MOUSE (Euké&yteanslational HMMER2 -184.6 (3.3) -150.5 (2.7e-1) -249 (2.4e-5) 1lle+4
initialization factor 5B) HMMER3 26.5 (8e-7) 4.4 (3.9e +2) 33.9 (4.6e-7) €858
PDB:3V8U|B 3.sp|Q5RDE1|IF2P_PONAB (Eukaryotic tiatisnal ~ HMMER2 -185.0 (3.4) -137.5 (1.0e-1) -33.2(45e-5) 22e+3
initialization factor 5B) HMMER3 28.6 (1.8e-7) -2.9 (5.8 + 4) 22.2(1.5e-3) 39e+7
4.sp|Q7XTT4|NUCL2_ORYSJ (Nucleolin 2) HMMER2 -190582) -130.5 (6.1e-2) -50.2 (1.6e-4) 38e+2
HMMER3 13.2 (8.2e-3) -5.0 (2.0e + 5) 145 (3.3e-1) 6.le+5
PF04814.8 HNF:_N (Hepatocyte nuclear fac5.sp|Q6PDK2|MLL2_MOUSE (Histone-lysine N- HMMER2 -70.2 (1.5) -45.6 (1.1e-2) -15.4 (2.5e-5) 4ed+ 2
1) methyltransferase 2D) HMMER3 24.5 (5.1e-6) 0.0 (2.9e + 4) 32.3 (4.1e-6) e 9
Domain length: 250 6.5p|P41046|CORTO_DROME HMMER2 -75.5 (4.4) -55.3 (7.6e-2) -6.1 (3.9e-6) 2404
(Centrosomal/chromosomal factor) HMMER3 23.0 (1.6e-5) 0.0 (2.9e + 4) 32.9(2.8e-6)  .0el+ 10
PDB:1IC8|B 7.sp|Q54RP6|DHKL_DICDI (Hybrid signamsduction HMMER2 -75.6 (4.5) -52.5 (4.3e-2) -6.9 (4.5e-6) €963
histidine kinase L) HMMER3 32.6 (1.7e-8) 0.0 (2.9e + 4) 47.7 (8.3e-11) 3.5e + 14
PF05134.8 T2SL (Type |l secretion system 8.sp|Q8VHG2|AMOT_MOUSE (Angiomotin) HMMER2 -81.4%) —69.3 (7.6e-1) 10.5 (6.1e-6) 13e+5
protein L)
Domain length: 321 HMMER3 18.2 (1.8e-5) 8.4 (3.6e +1) 28.2 (3.5e-5) .Oel+ 6
PDB:1 W97|L
PF09110.6 HAND (Chromatin remodeling  9.sp|P19338|NUCL_HUMAN (Nucleolin) HMMER2 -39.712. —-40.8 (2.6) 16.7 (3.6e-5) 72e+4
factor ISW1a)
PDB:2Y9Z|A HMMER3 23.3(2.7e-5) 3.7(2.3e+3) 22.1 (5.0e-3) B4+ 5
PF10390.4 ELL (RNA polymerase Il elongati@f.sp|P34103|PK4_DICDI (Protein kinase 4) HMMER2 0.7@3.7e-2) -49.4 (2.9e-3) -13.0 (3.9e-5) 74e+1
factor)
Domain length: 139 HMMER3 94.5 (2.5e-27) 0.0 (9.2e + 3) 99.8 (5.5e-27) 1.7e + 30
PDB:2E5N|A
PF00004.24 AAA (ATPase family associated11.sp|P51394|CHLI_PORPU (Magnesium-chelatase HMMER2 -27.2 (1.8) 38.5 (2.2e-6) -48.2 (1.4e +2) .6el8
with various cellular activities)
Domain Length: 252 HMMER3 11.3 (1.1e-1) 22.4 (3.1e-3) 6.0 (3.1e + 2) .0e15
PDB:1LV7|A HMMER3 5.6 (5.9) 26.4 (1.9e-4) -2.9 (1.4e +5) 1%e
PF00106.20 adh_short (Short chain 12.sp|Q9UXRBIHEM1_METKA (Glutamyl-tRNA HMMER2 -49.7 (1.7e-1) 13.7 (1.1e-5) -54.6 (9.0e-1) 1.2e-5
dehydrogenase)
Domain length: 230 HMMERS3 23.0 (7.9e-6) 43.1 (1.5e-9) -6.4 (5.3e +5) 2.8e-15
PDB:3MJC|B
PF01226.12 Form_Nir_trans (Formate/nitratel 3.sp|Q9ATMO|TIP12_MAIZE (Aquaporin TIP 1-2) HMMER2 -109.7 (1.3e-1) -47.5(1.2e-4) -45.3 (9.4e-5) 13
transporter)
Domain length: 366
PDB:3KCU|E

The segmentation of domain models is based on PDB/DSSP information.



In retrospect, all hit examples (see Table 1, column 2) wedreeved from the results of
HMMER2 (glocal-mode) and HMMER3 when searched against the sBvagUniProt
sequence database (see later in the text for the generaé reftifis test). To note, the
hmmsearch option ‘nobias’ in HMMER3 was turned off to increase theclsesensitivity
(ability to detect true hits) as stated in the manual [39].eikample, the true hit glutamyl-
tRNA reductase (HEM1_METKA) was not detected by HMMERS3 witien‘nobias’ option
was turned on. Next, the representative structures for the ékbamains were obtained by
searching against PDB FASTA database for the most sigmificawith E-value < 0.1 using
the global HMM model (HMMERZ2) for maximum model coverage.

Then, the structural residues (carrying “H, B, E, G, I, T, S”l&abethe DSSP files) were
retrieved from the corresponding DSSP annotations [40] with the puopasesecting each
domain alignment into its fold-related/remnant segments so thah#isingular fold-related
and remnant scores with respect to the hits can be derived bsirggdre reconstruction
procedure from the preceding section. Also, all the hits excepifd2_MAIZE were found

by both HMMER2 and HMMERS3 (see column 3), although the HMMERS3 returnegd onl
fragmented alignments which offered only partial coverage wispea to the domain
models (see supplementary website [37] for alignments). Thstisttsignificance E-value
cutoff for the evaluation was 0.1.

Based on a collective view of the standard HMMER output scosed(es in Table 1
(column 4), the hits produced HMMER2 E-values of between 3.7e-2 to 5.2 and between 2.5e-
27 to 1.1e-1 via HMMER3. At an E-value cutoff of 0.1, the overwhelming ntwgjofithe

hits would be considered false based on HMMERZ2, yet true by HVBVEBRd it would be
hard-pressed to tell the differences based on the standardlignatent HMMER score/E-

value alone.

However, once the fold-critical and remnant scores (see Tablelumms 5 and 6) were
considered, the distinction between the true and false hits becppa®r@t as depicted in
Figure 6. As a general trend, the fold-related scores of lhite 10 (IF2P_HUMAN,
IF2P_MOUSE, IF2P_PONAB, NUCL1l_ORYSJ, MLL2_MOUSE, CORTO_DROME,
DHKL_DICDI, AMOT_MOUSE, NUCL_HUMAN, PK4_DICDI) were vastlyrsaller than
the remnant scores indicating that they are spurious hits. Thesponding fold-related E-
values spans from 2.9e-2 to 2.6 (HMMER2) and 3.6e + 1 to 2.0e + 5 (HA\3)&gainst the
more significant remnant segments’ E-values ranges of 3.6e1@0&4 (HMMER2) and
5.5e-27 to 3.3e-1 (HMMERS3).

Figure 6 HMMER?Z2 versus HMMER3 average domain score (averaged over alWVhen

the fold-critical and remnant scores (see Table 1, columns 5 and 6) were caohsigere
distinction between the true and false hits becomes apparent. The Y = X margis tapic
regions: above is where the fold-critical E-values were smaller thanntiearg E-values

and below as vice-versa. As a general trend, the fold-related scoresiB2Rit$iUMAN,
IF2P_MOUSE, IF2P_PONAB, NUCL1_ORYSJ, MLL2_MOUSE, CORTO_DROME,
DHKL_DICDI, AMOT_MOUSE, NUCL_HUMAN and PK4_DICDI (see red points) wer
much smaller than the remnant scores indicating that they are spurious hitsiand t
corresponding fold-related E-values spans from 2.9e-2 to 2.6 (HMMER2) and 3.6e + 1 to
2.0e + 5 (HMMERR3) against the more significant remnant segments’ E-vahgesraf 3.6e-

6 to 1.0e-4 (HMMER2) and 5.5e-27 to 3.3e-1 (HMMERS). In contrast, the fold-related scores
were larger than the remnant scores for hits CHLI_PORPU, HEM1_ METKAb{se

points). For TIP12_MAIZE (see blue point), the difference between its fatecelnd



remnant scores was marginal. The corresponding fold-related E-values of 1.2e-46t0 2.2e-
(HMMER?2) and 3.1e-3 to 1.5e-9 (HMMER3) were more significant than the remnant
segments’ E-values of 9.4e-5to 1.4e + 2 (HMMER?2) and 3.1e + 2 to 5.3e + 5 (HMMERS3).

In contrast, the opposite trend was observed for hits 11 and 12 (CHLI.WORP
HEM1_METKA) where the fold-related scores were larger tharréh@hant scores. For hit
13 (TIP12_MAIZE), the difference between its fold-related and remrszores was
marginal. The corresponding fold-related E-values of 1.2e-4 to 2.2e-6 (HMMERZA.1e-3

to 1.5e-9 (HMMER3) were more significant than the remnant seghtemalues of 9.4e-5

to 1.4e + 2 (HMMER2) and 3.1e + 2 to 5.3e + 5 (HMMER3). Thus, the lattee hits are
rather true homologies in the segment representing the protein fold.

Furthermore, to investigate the difference in magnitudes betwsenfotd-critical and
remnant E-values, their ratios (see Table 1, column 7) wees.tak small ratio (<<1) is
indicative that the fold-related component is more significant tteanemnant counterpart
and, hence, its overall sequence similarity gravitates towards hom@aghe other hand, a
large ratio is suggestive of spurious sequence similarity.rati@of 1, both fold-related and
remnant segments’ components are on-par. As such, with the range of ratesbeéide + 1

to 1.3e + 5 (HMMER?2) and between 4.6e + 5 to 1.7e + 30 (HMMER3), hit 1 a0el® be
considered as false hits. And with ratios between 1.6e-8 to 1.3 (HMMERZ2) and between 2.8e
15 to 1.0e-5 (HMMERS), hits 11 to 13 are to be labeled as true hits.

For the alleged false hits (rows 1-4 in Table 1), the sequencdeatahe analysis was
performed [41-43] and their false associations with the domainstiigd as follows (see
Figure 7, HMMERZ2/3 alignments are available at the associ&M/\W site [37]). The model
Lipoprotein 5 (PF01298.13, row 1) can be represented by the transfemdigeoprotein B
(TbpB) from various bacteria. TbpB is part of the transferringpteceand it is an outer
membrane protein that is anchored to membrane via a lipidateanhvisr segment [44]. In
contrast to the model, IF2P_HUMAN, IF2P_MOUSE and IF2P_PONAB ramslation
initialization factors which are essentially cytoplasmioteins from various eukaryotes
while NUCL1_ORYSJ is a plant nucleolin which binds RNA in the nucl@bese diverse
proteins were related spuriously to the model via an N-termisaragred/low-complexity
segment with remnant segment’s E-values of 6.7e-6 to 1.6e-4 (HMMER?2) and 4.6e-7 to 3.3e
1 (HMMERS3). For the translation initialization factors, this linkegment contains multiple
phosphorylation sites [45]. Separately, another unrelated domain maA§& PF09110.6,
row 4), a chromatin remodeling factor [46], hits the nucleolin (NUGUMAN) again,
albeit human, on the N-terminal disordered/low-complexity segmehtBEvialues of 3.6e-5
(HMMER2) and 5.0e-3 (HMMER3).

Figure 7 Domain architectures of the 10 false (false-positive) hit3he domain
architectures of 5 Pfam domain modét$(01298.13 Lipoprotein5, PF05134.8 T2SL,
PF09110.6 HAND, PF10390.4 E) tevealed that the 10 hits (1:IF2P_HUMAN,
2:IF2P_MOUSE, 3:IF2P_PONAS, 4:NUCL2_ORYSJ, 5:KMT2D_MOUSE,
6:CORTO_DROME, 7:DHKL_DICDI, 8:AMOT_MOUSE, 9:NUCL_HUMAN,
10:PK4_DICDI) are falsely associated to the respective domain models threiggtifigant
non-structural segment which is typically low-complexity and disordered.

Next, the model HNF-1 N (PF04814.8, row 2) describes the N-termintiee diomeobox-
containing transcription factor HNF-1 (Hepatocyte nuclear factoiThig latter contains a
dimerization sequence and an acidic region which is implicatecamsdription activation



[47]. In contrast, the diversely different false hits MLL2_MOUSE)RTO_DROME and
DHKL_DICDI are a methyltransferase, a chromosomal protein ahthase respectively.
They are related to the HNF-1 model merely via a smadtcstrof N- or C-terminal
disordered segments with E-values of 3.9e-6 to 2.5e-5 (HMMER2) and 8.3e411et6

(HMMERS3).

Meanwhile, the model T2SL (PF05134.8, row 3) describes protein L, an nmgrabrane

protein of the bacterial type Il secretion system that seagea critical link between the
cytoplasmic and the periplasmic part of the Eps-system [48]cdntrast, the mouse
angiomotin (AMOT_MOUSE) is involved in angiogenesis and reguldtesaction of the

angiogenesis inhibitor angiostatin [49,50]. The angiostatin-binding linkgment of the

angiomotin made a false association to this bacterial domain mttielemnant segments’
E-values of 6.1e-6 (HMMER2) and 3.5e-5 (HMMER?3).

Finally, the model ELL (PF10390.4, row 5) is a RNA polymeraseldhgation factor that
regulates the polymerase 1l [51]. Yet, the hit PK4_DICDI, a pndtsase of slime mold, is
related to the model through a small stretch of disordered/low-eaitpllinker with
segmental E-values of 3.9e-5 (HMMER2) and 5.5e-27 (HMMERS3).

For the alleged true hits, the justification of sequence gityilaetween the hit and domain
model is best shown by fold similarity, especially for cadedistant homologs (indicated by
their large E-values) where more sequence divergence is eXxpddterefore, structure
alignment was performed on each pair of representative PD&ustes from the hit and the
domain model using the JCE algorithm [52] (see Figure 8, HMMERZhmalents are

available at the associated WWW site [37]).

Figure 8 Structural alignments between representative structures of domaimodel and

hit sequence for the 3 true (false-negative) hit3he original E-values of these 3 hifs. (
CHLI_PORPUB. HEM1_METKAC. TIP12_MAIZB were insignificant against the Pfam

domain modelsRF00004.24 AAA, PF00106.20 adh_short, PF01226.12 Form_Nir_trans)
However, their structural E-values were nevertheless significant (E <r@légd, the

structural alignments of representative structures between domain modeltsambwed

that their RMSD values were between 3.2 to 3.91 and over their full-length sequédnses.
indicated that the domain model and the associated hit sequences were indeed homologous to
each other.

The model AAA (PF00004.24, row 6) is a family of ATPases assacvaith various cellular
activities. The ATP-dependent metal binding core of the domain’s semetive PDB
structure (1LV7|A) consists of the characteristic WalkesrA°-loop motif, Walker B motif
and sensor motif, each extending beyond a R-strand [53]. The hit CHRPBO
(representative structure PDB:1GP8|A) from plant is a neagmechelatase that is involved
in chlorophyll biosynthesis. Its ATP core also consists of theethallmark motifs (Walker
A/B and sensor motifs) [54]. Although the total HMM'’s E-valuesnaein the hit and model
were insignificant at 1.8 (HMMER?2) and 1.1e-1, 5.9 (HMMERS3), the folevent E-values
were nevertheless significant at 2.2e-6 (HMMER2) and 3.1le-3, 1G#YMERS3). In
contrast, the remnant segments’ E-values were large at 24¢HMMER?2) and 3.1e + 2,
1l.4e + 5 (HMMERS3). Independently, a structural alignment revediatl tlespite vast
differences between the loop lengths of the two structures, @nedde RMSD score of 3.91
over an alignment length of 255 positions was achievable over theusatuglements (See



Figure 5A). The ATP binding domains of both hit CHLI_PORPU and mod& A¥e indeed
homologous.

Next, the model adh_short (PF00106.20, row 7) is a family of NADP-dependent
oxidoreductases. Its representative PDB structure (SMJC|An ig\-type ketoreductases
consisting of two subdomains, a N-terminal sub-structural domain anrrn@al catalytic
subdomain that binds NADRand its R3-ketoacyl substrates [55]. On the other hand, the hit
HEM1_ METKA (pdb:1GPJ|A) is a glutamyl-tRNA reductase whickessial for initiating
tetrapyrrole biosynthesis in plants and prokaryotes. Structuratpnsists of 3 domains : a
N-terminal RNA-binding domain, a NADPH-binding domain and dimerizatiomain [56].

The standard E-values of hit to model were insignificant at OrIMMMER?2 but significant

at 7.9e-6 for HMMER3 over a small fragmented piece. However, fotidirelated E-values
were significant (HMMER2: 1.1e-5, HMMERS: 1.5e-9) while both remnagfrents’ E-
values were insignificant (HMMER2: 9.0e-1, HMMER3: 5.3e + 5). Seelgraa structural
alignment between the two PDB structures gave a good RMS2 &f08.52 over 188
alignment positions between the 3MJC structure and the NADPHAgirdbmain of 1GPJ
(See Figure 5B). Again, the structural alignment revealedntjer differences in the loop
lengths. Nevertheless, both hit and domain share a homologous TWEIFPH binding
structure.

Finally, the model Form_Nir_trans (PF01226.12, row 8) describes the mmrtibrane
formate/nitrite transporter (PDB:3KCU|E) of bacteria thatilitates the formate/nitrite
transport essential for anaerobic respiration [57]. On the other tmenkit fTIP12_MAIZE is
a plant aquaporin (representative structure PDB: 1YMGI|A) thatsport water and small
neutral solute across the membrane [58]. Interestingly, it has fdregiously reported that
the fold of the formate transporter is uncannily similar to tinelfaof aquaporins despite a
low sequence identity of 9-12% [59], thus raising the question if tamsporter is indeed a
channel. Consistent with previous findings, the structural alignmentebgnt the two
representative structures produced a good RMSD of 3.2 over 273 atigposations (See
Figure 5C). Meanwhile, the hit TIP12_MAIZE was only detectableheyHMMER2 domain
model at an insignificant standard E-value of 0.13, but its foldatesegments’ E-value
was nevertheless significant at 1.2e-4. Interestingly, its remsegments’ E-value also
showed high significance at 9.4e-5. The latter suggests thathékdiverse family of GPCRs
where the loop regions confers the sub-family functions [60,61], dasirole might also be
expected with the non-fold-related segments in the formate/nitrite/acudiganiy.

Taken together, we have illustrated that the dissection frameworkdpsotfie segment-based
scores (e.g. the fold-related and other segments’ scoreg) fare concise assessment of
sequence similarity as evidence for homology. To emphasize,ngtefi compositionally-
bias sequence segment might be unnecessary since falsellhlte wccluded under this
framework when their non-fold-related segments appeared sagntifistatistically. Most
importantly, the framework provides an opportunity to elucidate the olustwes hits hidden
among the false ones in the twilight E-value range of 0.1 to 10.

Quiality score as a proxy to identify the structuralsegments of domain models
for score dissection

In an ideal situation, the combined PDB/DSSP data provides the besnhatibn for
dissecting a domain model into its fold-related and remaining sggmi®r score
reconstruction. But currently, only a small portion of domain models &iaassociated PDB



structure. As such, one needs a surrogate for estimating the albtemtore conserved
elements and remaining segments for the dissection framewdrk applicable on a larger
set of domain models.

For this purpose, the alignment quality measure (called qualitg $edher in the text) that
assesses sequence conservation in CLUSTALX [62] was investigatedhe exact form of
the measure is not critical for us here. For example, one couldréke@ on the measure
used in Jalview [63,64] or others [65,66]. As a trend, fold-critical satgweill deliver dense
parts in multiple alignments and, thus, generate high quality scoresontrast, variable
loops and man non-globular types of sequence will result in poor mudliglements and,
hence, produce low quality scores. As is illustrated by Figutkebsegmentation based on
DSSP annotation will, as a trend, correctly estimate fold-aellesegments (or underestimate
them) whereas the score based on alignment quality tends tordegroee generously
including also other segments besides the most fold-relevant onesithetass, in the
subsequent section, we show that the high-quality alignment segmemtsséntative for
fold-critical segments) still contain significantly higheadtions of residues engaged in
secondary structural elements compared with low-quality alighsegments (representative
for fold-irrelevant segments).

First, the quality score per position for each domain alignnme®&VIART and Pfam were
computed (see equations (10, 11, 12,13, 14 and 15) in the Methods). Alignmentsswith |
than 5 sequences were not considered for the analysis due tacieatitatistical power at a
significance level ofg =0.05. Next, each alignment position is classified as high or low-
quality based on the appropriate thresholds (see equations (16,17)hiods)etThe quality
score thresholds are at least 0.06 (false positive rate 5%, trtiggooste 90%; see Methods
section “Determination of domain-wise score cutoffs ...” and the ttdidecin) and 0.14
(false positive rate 5%, true positive rate 91%; see Method#ose'Determination of
domain-wise score cutoffs ...” and the table therein) for SMAR@ &fam domains
respectively. Finally, the high-quality and low-quality segmentsdpenain alignment were
derived using equation (18).

Separately, matching structures were searched for. dhalghode HMM models were built
using the HMMER?2 software suite to maximize for full coveraggee HMM models were
searched against the PDB FASTA sequences to obtain the muoisicant hit (E-value at
least 0.1) with the associated secondary structure residueseredor each alignment
position using the DSSP annotations [40], and the number of structudaie®$carrying “H,

B, E, G, I, T, S” labels in the DSSP files) is computed.

In total, 635 (out of 808) SMART and 5876 (out of 14831) Pfam domains aldecto
retrieve a significant PDB hit that covers the model's faligth. Each of these domain
models was then subjected to the Fisher’s exact test (saBoeg(®) in the Methods section
“Fisher’s exact (one-tailed) test ...” and also the tableeihgrto determine if there is an
enrichment of structural residues in the high-quality segmentsishgthe low-quality
segments. Interestingly, at a significance level ot 0.05, 537 (out of 635) SMART
domains and 4771 (out of 5876) Pfam domains were enriched with struegidales in their
respective high-quality segments (find lists of domains atafiseciated WWW site [37]).
This is more than 80% of the testable SMART/Pfam domains. Foethaning 98 SMART
domains and 1105 Pfam domains, there is insufficient statistical powesject the null
hypotheses. This is supported by a control test where the same @d8TShd 5876 Pfam
domains were tested in the opposite direction to see if there is an enrichmenisbfuctural



residues in the high-quality segments against the low-qualgynessts but none was
significant. Thus as a trend, high-quality alignment segments amhdagy structures go
hand in hand. At the same time, we emphasize that secondary stralgarants, as a rule,
will lead to high-quality alignments, the opposite is not necigstaue; non-globular
segments might also produce high-quality alignments, espetfigtly number of sequences
is not large. For our purpose, it is enough to have the quality ssowecassary condition for
fold-related segments.

It is also noteworthy to mention that the dissection frameworlgusia quality score were
applied to the 13 validated examples from the preceding sectioncdri@usions were
similar to that of Table 1 except for the cases of aquaporinlZTIMAIZE and
HEM1_METKA for HMMER2 (see Additional file 2: Table S1). Indition, the results of
the SEG-derived dissection (see equations (24 and 25)) for the 13 examgpéesalso
included; a method that find low-complexity regions as surrogateloiog loops and
intrinsically unstructured segments [67]. Based on the SEG-deHMMER?2 results, the
conclusions were generally comparable to that of the quality scaneeveér, the SEG-
derived HMMERS results suffered from a handful of differences aratumacies e.g. 5 false
hits of the Lipoprotein5 (PF01298) domain were concluded as true hits.tiigmini study,
it appears that any inaccuracy in the segmentation of domain moteits fold-critical and
remnant components will be amplified in the final dissection testihis is especially true
for the fragmented HMMERS alignments. From the case studymganthe quality score is
a better surrogate of PDB/DSSP information for domain model disseghen compared to
the SEG-derived ones.

The dissection framework validates the seed sequerxin domain alignments
and systematically identifies the potential false gsitive and false negative hits
in HMMER searches

In this section, the behavior of the score dissactramework when applied to the hits’
alignments returned by domain models from HMMERrdess was examined. For this
purpose, 285 (out of 537) SMART and 2381 (out ofY7/Pfam domain models were taken
from the preceding section after filtering domaindals with low-quality segments of less
than 10 alignment positions. Furthermore, to avpatential bias in outcome due to
differences in search sensitivity by either HMMEB2HMMER3, both were used for the
generation of the initial result sets where onlymomon hits by both HMMER2 and

HMMERS3 were dissected.

First, each selected SMART/Pfam domain was searckied HMMER2/3 hmmsearch)
against (i) the seed database consisting of sepgtsees and (ii) UniProt/SwissProt database
to generate altogether 4 sets of scores: HMMER&/seeHMMER3/seed,
HMMER?2/SwissProt and HMMER3/SwissProt score semxtNfor each score set, the hit
alignments were dissected into high-quality (erecchwith structural residues) and low-
guality segments. The corresponding sub-scoresetisa® the total score were statistically
evaluated in terms of E-values independently fahlogh- and low-quality parts (see Table
2 and the Methods section “Classification of hits the comparative HMMER2 and
HMMERS3 analysis”).



Table 2Label of individual HMMER hits (TP, FN, FP, TN) based on E-values of total
score, high-quality score and low-quality score

Type E-value
Total score High-quality score Low-quality score
TN >0.1 >0.1 >0.1
>0.1 >0.1 <0.1
TP <0.1 <0.1 >0.1
<0.1 <0.1 <0.1
FP <0.1 >0.1 <0.1
FN >0.1 <0.1 >0.1
? >0.1 <0.1 <0.1
<0.1 >0.1 >0.1

Type (?) occurs when the score threshold causedothe score to become insignificant
(despite significant high and low-quality scoreare versa.

In the statistical evaluation, the E-values werkeudated using a standard database size of
540261 (UniProt as of April 2013; using equatioi i(2the Methods section). This implies
that the HMMER3 E-values were adjusted since thiginal E-values were computed based
on the size of the returned set. On the other h#rel,peculiarity in HMMER2 E-value
calculation previously reported in [20] (jumpingtlveen two statistics) was suppressed and
the usage of the extreme value distribution (EV@swenforced in all computations. Finally,
the significance call for E-value is set at 0.remommended by the HMMER authors [38].
Subsequently, all hits were tagged as true-pos{f\®), false-negative (FN), true-negative
(TN) and false-positive (FP) (see Table 2).

Finally, the hits from HMMER2/seed and HMMERS3/sesmbre sets were paired as long as
the hits shared a common sequence segment to ereatdied set between HMMER2 and
HMMERS3 results. The same was repeated for HMMER®SWot and
HMMERS3/SwissProt score sets. Among the paired sy can be sub-classified into the
concordance and discordance class. Accordinglyctimeordance class contains hit results
agreed upon by both HMMER2 and HMMER3 where theitpes concordance class
suggests that the hits are true while the negatweordance class suggests that the hits are
false. On the other hand, the discordance clastiosnthe results where HMMER2 and
HMMERS3 disagreed upon. Fundamentally, this clagseardue to the differences in model
parameterization and search/alignment algorithnibated by the two flavors of HMMER. It

is beyond the scope of this work to resolve whiehsion of HMMER is better suited for the
purpose. In addition, unmatched or orphaned hésaiso excluded since this touches on the
issue of search sensitivity and it is again notfdwais of this work on score dissection (see
Table 3 and the Methods section “Classificatiorhivé in the comparative HMMER2 and
HMMERS3 analysis”).



Table 3Classification of paired/orphaned hits for comparative HMMER2 and
HMMERS3 analysis

Group Classification Type
Paired hits HMMER2™RYEHMMERGTRYE TPTP
(Positive concordance) TPFN
FNTP
FNFN
HMMER2™-SEHMME R3S TNTN
(Negative concordance) FPTN
TNFP
FPFP
HMMER2™RVEHMMER3™ S TPFP
(Discordance type 1) FNFP
TPTN
FNTN
HMMER2™"SEHMMER3™"E FPTP
(Discordance type 2) FPFN
TNTP
TNFN
Orphaned hits HMMER2CON-Y TP
FN
FP
TN
HMMERZN-Y TP
FN
FP
TN

Figure 9 shows the base performance of the disseftaimework when applied on the seed
score set. Basically, one would expect a high pasitoncordance rate (an ideal value of
100%) and a low negative concordance rate (an iciae of 0%) per domain model given
that all its seed sequences are considered taédits. This also necessarily follows that the
high-quality scores/E-values are more dominant tih@nlow-quality counterparts for these
seed sequences.

Figure 9 Histograms of the positive and negative concordance rates when applied to
seed sequences of 285 SMART and 2381 Pfam domain models. High-quality E-values
versus low-quality E-values plots for concordance hits from HMMER2 and HMMER3-
dissected resultsFigureA andB depict the histograms of the positive concordaates for
the 285 SMART and 2381 Pfam domain models respaygti®n average, the positive
concordance rates are (99.17 + 3.46)% for SMART(88b9 + 2.13)% for Pfam, suggesting
that almost all the seed sequences were corretigdd as true hits (see vertical dotted
lines). 225 (out of 285) SMART and 2142 (out of 2BBfam domains have a 100% positive
concordance rate as depicted by the horizontadéddities. Likewise, Figur€ andD show

the histograms of the negative concordance rateabéosame sets of domains. On average,



the SMART and Pfam domains have a negative connoedate of (0.0033 £ 0.0042)% and
(0.0017 £ 0.0341)% respectively (see vertical dblitges), implying that almost none of the
seed sequences are mistaken as false hits. 288f(285) SMART and 2374 (out of 2381)
Pfam domains have a zero negative concordanceasaterked by the horizontal dotted
lines. FigureE andF plot the high-quality E-values versus the low-iydt-values of the
positive (in red) and negative (in blue) concoraahits of the HMMER2/SMART and
HMMER2/Pfam dissected results respectively. SiryijdfigureG andH show similar plots
for HMMER3/SMART and HMMER3/Pfam dissected resuéispectively.

Figure 9A and B depict the histograms of the pesitoncordance rates (see equation (19) in
Methods) for the 285 SMART and 2381 Pfam domain e®despectively. Note that the
total paired hits included the discordance hitsnésally speaking, 225 (out of 285) SMART
and 2142 (out of 2381) Pfam domains under investigaexhibit a perfect positive
concordance rate as depicted by the horizontaledolines. On average, the positive
concordance rate was (99.17 + 3.46)% for SMART @9d69 £ 2.13)% for Pfam as depicted
by the vertical dotted lines. This suggests thatost all the seed sequences were correctly
labeled as true hits.

However, there were about a dozen of domains thee [deviated from the ideal rate of
100% quite significantly. At below 90% positive candance rate, there were altogether 9
Pfam and 4 SMART domains. A detailed breakdownhef $eed sequence classification of
these 13 domains was given in Table 4. Among tliesrains, the discordance rates of
several domains like SM00185 (ARM), PF10590.4 (PXPRD seed), SM00733 (Mterf),
SMO00304 (HAMP), PF00433.19 (Pkinase_C) and PF138@4-C2H2_4) stood out at more
than 20% (20.99%, 21.41%, 25.16%, 38.76%, 45.18% &1.43% respectively).
Incidentally, their domain lengths range betweerad@ 159 alignment positions (on average
about 100 alignment positions). This implies that these short domains, an E-value
threshold of 0.1 is not optimal.



Table 4 Detail breakdown of the seed sequence classification of 9 Pfam and 4 SMA&omains with positive concordance rate of < 90%

Pfam/SMART domains Domain length Positive Total Common hits Orphaned hits Positive Total discordance
concordance/Total HMMERZ2/3 concordance (%) (%)
Discordance
PF00433.19 Pkinase_C 159 108/89 197 55/0 54.82 845.1
PF01426.13 BAH 349 53/10 63 4/0 84.13 15.87
PF02098.11 His_binding 296 19/4 23 0/0 82.61 17.39
PF02965.12 Met_synt_B12 309 14/2 16 0/0 87.50 12.50
PF05594.9 Fil_haemagg 160 122/16 138 17/0 88.41 5011.
PF10590.4 PNPOx_C_seed 112 268/73 341 0/0 78.59 4121.
PF11736.3 DUF3299 235 79/13 92 0/0 85.87 14.13
PF13894.1 zf-C2H2_4 105 2/5 7 577/0 28.57 71.43
PF15612.1 WHIM1 66 29/4 33 3/0 87.88 12.12
SM00185 ARM 66 128/34 162 7/0 79.01 20.99
SM00304 HAMP 122 79/50 129 91/0 61.24 38.76
SM00320 WD40 119 580/137 717 1055/0 80.89 19.11
SMO00733 Mterf 49 115/39 155 90/0 74.19 25.16




There was also another interesting observation wetjard to the differences in search
sensitivity between the HMMER variants. For theesasf SM00320 (WD40) and PF13894.1
(zf-C2H2_4), it was found that the number of orgtamits found by HMMER2 only (see
column 5 in Table 4) was more than the number afroon hits that can be paired between
HMMER2 and HMMER3 (see column 4; Table 4). As aeseffect, they suffered a low
positive-concordance rate. An investigation onrtldemain model revealed that more than
half the alignment positions are made up by gafieerahan sequences (see supplementary
website [37] for alignments). Thus, the list of ddmmodels that dramatically differ from
the optimal recovery rate of sequences in this test also be seen as a suggestion for
domains that might benefit from seed alignment akeration and polishing. This might
include either alignment re-arrangement and/orwesxah of some of the seed sequences.

Meanwhile, Figure 9C and D show the histogramstiier negative concordance rates (see
eqguation (20) in Methods) of the same sets of dosndn this case, 283 (out of 285) SMART
and 2374 (out of 2381) Pfam domains have a zerativegconcordance rate (see horizontal
dotted lines). On average, the SMART and Pfam dosnhave a negative concordance rate
of (0.0033 = 0.0042)% and (0.0017 %= 0.0341)% respely (see vertical dotted lines),
implying that almost none of the seed sequencesnataken as false hits. Taken together,
the dissection framework has asserted the valafityhe seed sequences as true hits of their
respective domains.

The concordance hits were also plotted in termthe@if high-quality (fold-critical surrogate)
E-values and low-quality (remnant surrogate) E-ealin Figure 9E to H. The positive
concordance hits are in red while the negative @mesn blue. Figure 9E and F shows the
concordance hits generated by HMMER?2 for SMART Bifi@m domains. From both plots,
the trend where the high-quality E-values are ndomainant than the low-quality E-values is
apparent (in red). This implies that these positmecordance seed sequences are indeed true
hits of the respective SMART and Pfam domains. Mdale, a small number of negative
concordance hits reside in the insignificance castddefined by high-quality E-value > 0.1
and low-quality E-value > 0.1. These are the hitat thad contributed to the non-zero
discordance rates. Meanwhile, Figure 9G and H defhie SMART/Pfam results for
HMMERS. Essentially, the same conclusion can beemad

Having established the baseline performance ofliseection framework, we then attempt to
guantify the level of false-negative (FN) and fatgesitive (FP) hits from the results of the
unified SwissProt score set generated earlier Fsgere 7). To emphasize, a FN hit is a
positive hit that has been mistaken as a negativaule to its inability to score well against
the low-quality segments while a FP hit is a negahit that is thought to be a true hit due to
a significant score on the low-quality segmentse Tdw-quality segment score is especially
redundant for the current domain models under tiy&son since these segments harbored
mostly residues which contribute lesser to the al/dold of a protein than the structural
residues. As a measure of FN and FP rates, theoSUiAFN, FNTP and FNFN hits and the
sum of FPTN, TNFP and FPFP over the total pairdd hias taken respectively (see
equations (22 and 23) in Methods and Table 3).

Figure 10A and B show the histograms of the now-E&t rates for 197 (out of 285) SMART
and 1195 (out of 2381) Pfam domain models respagtiihe remaining 88 SMART and
1186 Pfam domains with zero FN rates were excldided the plots. In particular, these 197
SMART and 1195 Pfam domains potentially generatddits in the HMM searches. In fact,
some of the FN hits from these domain models walieated as true hits like the magnesium



chelatase (CHLI_PORPU) and the glutamyl-tRNA redset (HEM1_METKA) from our
earlier illustration. Henceforth, it is suggestitleat there are many yet to be validated
homologous relationship, albeit distant, betweers¢hFN hits and their associated domain
model that requires case-to-case clarificationa@erage, the FN rates were (7.63 = 14.98)%
and (4.86 £ 10.27)% for SMART and Pfam respectiysse vertical dashed lines).

Figure 10Histograms of the false-negative and false-positive rates of 197 (out of 285)
SMART and 1195 (out of 2381) Pfam domain models when applied to
SwissProt/UniProt databaseFigureA andB show the histograms of 197 (out of 285)
SMART and 1195 (out of 2381) Pfam domain model$witn-zero FN rates respectively.
The remaining 88 SMART and 1186 Pfam domains wetto £N rate were excluded from
the plots. In particular, the non-zero FN rate dms@otentially generated FN hits in the
HMM searches. On average, the FN rates were (78838)% and (4.86 + 10.27)% for
SMART and Pfam as marked by the vertical dashex$li8imilarly, Figuré&C andD depict

the histograms of the non-zero FP rates for 42¢baB5) SMART and 370 (out of 2381)
Pfam domains. The remaining 243 SMART and 2011 Rfamains with zero FP rates were
excluded from the plots. In contrast to the FNsatke FP rates were relatively lower. The
average FP rate for SMART is (0.377 £ 1.703)% &n€l53 + 4.707)% for Pfam, as depicted
by the vertical dashed lines. Note that all therages were taken over 285 SMART and 2381
Pfam domains respectively.

Meanwhile, Figure 10C and D depict the histogramte non-zero FP rates for 42 (out of
285) SMART and 370 (out of 2381) Pfam domains. fdmaaining 243 SMART and 2011
Pfam domains with zero FP rates were excluded tlwplots. In contrast to the FN rates,
the FP rates were relatively lower where the awefdg rate for SMART is (0.377 £ 1.703)%
and (0.953 £ 4.707)% for Pfam (see vertical dashmes). Unsurprisingly, since most
domain models were constructed from the well-car&wissProt sequences, this resulted in
only 42 SMART and 370 Pfam domains with non-zeror&ties. Indeed, the current domain
models have generally very low false hits inclusaanexpected. Note that all the averages
above were taken over 285 SMART and 2381 Pfam dwsmaspectively.

In hindsight, SMART and Pfam domain models haveendeen constructed to find all true
hits (to ensure low FN rates) and this is not atendb worry. It is more important in this
context that the FP rate is extreme low (<1%) fastdomain models. The few exceptional
models with high FP rates deserve re-visiting adesmodifications in their seed alignment.
However, it is important to bear in mind that thieoe rates estimated here are suggestive of
baseline rates since the searches have been pedawer UniProt/SwissProt, which is a
relatively small database. The expected error natight be higher when a larger database
such as NCBI's non-redundant protein databasensidered.

Discussion

Sequence homology concept in its current implemertian and the necessity of
dissecting sequence alignments

The sequence homology concept is backed by an timduproof. It originates from the
observation that homologous proteins share a hegineg of sequence similarity, protein fold
and biological function. The key to sharing a samifold, implying a similar function,
between the homologs is dependent on the similagtween the more conserved parts, most



importantly the structural elements. As such, thelence for homology should stem from
the similarity between the aligned structural eletaeand key functional motifs with less
emphasis from the other sequence segments. Aslwedkeper into the search space, higher
sequence divergence is to be expected and it wiltedoverall sequence similarity and
consequently, the homology signal. Therefore, thgpheasis on similarity between the
structural elements in alignments is the key tdlifig the homologs (both the close and the
distant ones) while keeping the false ones at bay.

Despite its simplicity and elegance, the sequenoendfiogy concept is not readily
computable since homology has no direct measurearit at best be formulated into a
hypothesis to be tested from the sequence sinyilaritich is a necessary but insufficient
condition for concluding homology. Although simitgrby chance can be removed by some
statistical criterion like E-value, often, the maissue is dealing with the statistically
significant similarities of any aligned pieces tas program outputs) that are concluded as
homologous instead of convergence as alternativeeSurrent sequence search packages
can only operate strictly in similarity space, thes a tendency to promote, to some extent,
the fallacy that ‘high sequence similarity implieemology’.

Even in current times, this fallacy is still beiagtensively discussed by several authors, e.g.
by Varshavsky and coworkers who coined the termuetg” in an attempt to differentiate
homology from high sequence similarity [68] and Tdiyeobald who highlighted the sins of
sequence similarity derived p-values in concludegnmon ancestry [69]. However, there
was no proposed quantitative solution on the fgliasue. In mitigation, certain convergence
cases in the form of compositional bias segmemdeasuppressed by pre-filtering with SEG
prior to BLAST searches or by turning on ‘null2’damobias’ options in HMMER searches,
but this also comes with the price of sacrificing® sensitivity (i.e., the ability to detect true
hits) [10]. On top of that, not all loop segmente @ompositionally-biased per se. For
example, the extracellular loops of GPCR are ingyarin functionally distinguishing the
diverse GPCR families [60].

Thus, the sequence homology concept has yet tallyeirnplemented in current sequence
homology search packages because mindful distmcti@tween contributions from
evolutionary important pieces versus spurious sintyl pieces was never explicitly dealt
with; hence, this necessitates for the dissectioancalignment for explicit segments to be
reevaluated. As we emphasized in the Introductio(globular) domain is a special protein
sequence unit with structural (autonomous hydrojhobre), thermodynamic (independent
folding and melting) and evolutionary (domain shaoff) implications [30]. Protein domain
libraries widely used for homology-based annotationtain a sizeable number of entries that
do not represent domains in this sense. Thus, sliesection becomes an option to deal with
this problem. As a necessary condition to be ceamsitl as a true hit, the fold-relevant
segments should either be more statistically Sicanit than the other segments or minimally
be statistically significant on its own.

The dissection framework and its implications in ealuating and detecting
homology in annotation pipelines

In our proposed dissection framework, an alignmisntdissected into its high-quality
segments (representing fold-relevant residues)l@nebjuality segments (representing other
residues) with the subsequent purpose of statistieaaluating the two segment-based score
sums. Together with the original scores/E-valubssé¢ segment-based sums provide a new



level of granularity to the dissection framework ftermining if a hit is true (true-positive
and false-negative) or false (true-negative andefglbositive). In a nutshell, the dissection
framework has created a new paradigm in which hogyotan be evaluated more concisely
and, at the same time, more faithful to the segai¢érmenology concept. And for the purist of
the homology concept, sequence searches now hbgtes chance to escape the fallacy of
‘high sequence similarity implies homology’.

For the true-positives of the domain model, theseliton framework can reassert their
validity as legit hits with respect to the domdimdeed, when the framework was applied to
the seed sequences of 285 SMART and 2381 Pfam domadels (with PDB/DSSP
information; selected based on enriched structtgsidues in their high-quality segments),
they exhibited the average positive and negative@alance rates of 99% and almost 0%
respectively. These results imply that the seediesszps were recognized correctly by the
framework as true hits of the domains.

On the other hand, cases of false hits (falsedpesitand true-negatives) will be occluded by
the framework due to their significant low-qualggores/E-values. This scenario was played
out by the case study of the 10 false hits (IF2PMA, IF2P_MOUSE, IF2P_PONAB,
NUCL1_ORYSJ, MLL2_MOUSE, CORTO_DROME, DHKL_DICDI, MOT_MOUSE,
NUCL_HUMAN, PK4_DICDI) where their original HMMERZE-values were insignificant
yet significant for HMMER3. Despite a contradictagnclusion from the HMMER variants,
their remnant segment-based E-values were indisjyutsignificant for both HMMER
versions. Thus, HMMERS3 hits were tagged as falsstipes while the same hits by
HMMER2 were labeled as true-negatives. In bothabey were considered as false hits by
the framework. Interestingly, pre-filtering of coogitionally-bias sequence segment may
become less critical under the dissection framewarke these hits will anyhow exit as false
hits due to their significant remnant segments’aiitg@s. This also meant that the ‘null2
model correction’ and the ‘nobias’ option in HMMERZan be turned off to maximize for
search sensitivity to allow more hits.

Given the results in this work, a quantitativeemin for assessing segmented HMM scores
in annotation pipelines might include the expeotat{i) for the fold-relevant contribution
resulting in a low E-value (e.g., <0.01 or <0.001dependently of the E-value for the total
alignment and/or (ii) for the ratio between the & of the fold-critical part versus that of
the remnant contribution clearly below 1.

To emphasize, score dissection with regard to ¢olkizal and other segments is a generic
concept that can be applied to any sequence oipteudligment comparison technique. This
idea can be easily extended, for example, to thé3l-based approach with minor
adaptations: first, the extraction of the EVD paetans from the blast statistics and second,
the parameters used for score reconstruction reeee extracted from BLOSUM/PAM for
BlastP algorithm and PSSM for PSI-Blast algorithm.

Most importantly, the dissection itself should auarely at approximating the location of
globular domains by applying either tertiary stuunet finding algorithms or any tools for
detecting non-globular segments. We can only wayainst applying non-physical, non-
evolutionary dissection principles such as cutseguences arithmetically first in two parts,
then in four and then, maybe, in eight as many triightempted to. This approach is likely to
distribute fold-critical residues to many of thegsents, hence diluting evolutionary
information instead of enriching it in one class.



The dissection approach helps finding yet unexplotehomology relationships

Perhaps, the most interesting additional capabilftyhe dissection framework, aside from
being able to isolate false hits, is its proposklunexplored homologous relationships
between the hits and domain models. This meanegetievery of hits presently being falsely
labeled as negatives. When the dissection framewaskapplied to the search results against
UniProt/SwissProt for these 285 SMART and 2381 Ptlomains, it revealed an overall
average false-positive rate of less than 1% buttleage false-negative rates of 7.63% for
SMART and 4.86% for Pfam. Although the low falsespiwe rate implies that the current
domain models have generally very low false hittusion, the moderate false-negative rates
suggest that there are many potential true hits @@ obscured by bad E-values. This
situation was exemplified by our case study whée previously insignificant true hits
(CHLI_PORPU, HEM1_METKA, TIP12_MAIZE) were obscured a result of heavy score
penalties on the low-quality alignment segmentsweieer, they were subsequently rescued
by their significant fold related segments’ E-vaue

In particular, the discovery of the homologous treleship between the plant aquaporin
(TIP12_MAIZE) and formate/nitrate transporter (PER@.12), which indicates that the latter
is actually a channel, was essentially exclusivthéostructure-alignment based approaches.
Even though certain sequence search methods neggattdsome level of sequence similarity
between aquaporin and formate transporter but tiewalues remain statistically
insignificant (e.g. the HHPred server [36] retus/alue of 20 between aquaporin and
formate transporter). However, with the proposessetition framework, this evolutionary
relationship can be rediscovered in sequence sityilspace through the justification of a
statistically significant fold-critical E-value. Kan together, we have shown that it is possible
to explore deeper into sequence space to recow@ toe hits without admitting the false
ones. Surprisingly, this is achievable without tiweg or modifying the existing search
algorithms but by simply performing postmortem diggn of alignments and re-evaluation
of the segment-based scores.

Estimation of evolutionary segments in domain modsl|

It is neither practical nor reasonable to createao models without their non-fold-related
segments so identifying these pieces is a mattareoéssity. A critical component in the
proposed dissection framework is the pre-definitérthe evolutionary-related pieces in the
domain models. The PDB/DSSP data gave the bested#ion of fold-critical segments from
the remaining ones. However, it suffices only apraof of concept for the dissection
framework and is not readily applicable to domawdeis that do not have a significant PDB
structure representation. Hence, a more generalizeasure is required as a reasonable
surrogate for estimating structural segments of alonmodels. As such, the quality score
from CLUSTALX [62] as representative of similargiiment quality scales, which measures
sequence conservation for each alignment colums imvestigated.

As it turns out, the Fishers’ exact test showed 388 SMART and 4771 Pfam domains were
enriched with structural residues in their respectiigh-quality segments. This was out of
635 SMART and 5876 Pfam domains with a represemtd&DB structure. Correspondingly,

the high-quality and low-quality segments were dbleeasonably estimate the fold-critical
and remaining segments respectively. This was duntbinforced when the examples from
the case study were reexamined by the dissectamnefivork using the quality score instead
of PDB/DSSP. Overall, the conclusions were similaith the exception of 2 hits



(TIP12_MAIZE, HEM1_METKA for HMMER?2 results). Fohe cases of these 2 hits, this

signifies that quality score is an overestimatéotif-critical segments and as a result, it tends
to underestimate the false-negative hits by adgeg of the negative remnant sum to the
fold-critical sum. Indeed, a scrutiny on the highatity segments of the associated domain
models for these 2 hits revealed that some of teegeents were covered by loop residues
when compared against the PDB/DSSP annotations.

In hindsight though, one should err on the sideocsfservativeness; i,e., one needs to be more
stringent with claiming a true hit. Therefore, thelity-score is still a reasonable estimate for
partitioning the fold-relevant and remnant segmeN&vertheless, one can easily add more
estimates like low-complexity/disorder predicto&EG [67], IUPred [70], GlobPlot [71],
tools for predicting regions with certain posttiatisnal modifications and translocation
signals [72,73], etc.) on top of the existing qyalscore measure so that a more
comprehensive definition of fold- and domain fuanticritical versus other segments can be
derived.

However, this task of selecting/combining predistt mimic the PDB/DSSP information to
perform domain segmentation is not straightforwakthen compared to the quality-score
results, the application of SEG-based dissectiorthto 13 case study examples worked
equally well for the HMMER2 hits but less so for myeof the fragmented HMMERS hits.
This revealed the sub-optimality of SEG in eluditigtthe fold-critical domain segments
when compared to the quality-score. Consequethigyeffect is more pronounced in the short
fragmented HMMER3 hits than the longer HMMER2 hiBespite so, the SEG-derived
segments can still help to identify well-consenl@a-complexity segments (to be marked as
remnant segments) that will otherwise be missedthy quality-score. Hence some
combination of the two predictors makes sense.

In any case, the creation of a catalogue of segatiens for existing protein domain libraries
such as Pfam or SMART will be necessary in the rateseof complete PDB/DSSP
information for a foreseeable future and it willdmnsidered in our future work.

Conclusions

As sequence homology can only be concluded indelgtiand overall sequence similarity is
a measurable, necessary but insufficient criteritmn justify homology, additional
considerations are required to decide about horngotetationships between biomolecular
sequences. To distinguish the true cases fromalse background might be possible in a
manual study for individual cases; yet, a compaéetipipeline for large-scale annotation
requires quantitative conditions.

The complex hydrophobic/hydrophilic sequence patteecessary for fold formation and

conserved during evolution can be used for thippse by dissecting the similarity score into
fold-critical contributions and other parts origiimg from non-globular segments, long loops,
etc. This work serves as a proof of concept fas tiea. The dissection framework and the
software tools provided with this article are usdtu systematically suppressing otherwise
generated false-positive hits in sequence simylagarches.



The dissection approach allows also extracting nvatae out of existing protein domain
model databases without the need to re-edit themplgiby defining segmental contribution
and, thus enhancing or deemphasizing certain patte seed alignments.

Surprisingly, this approach was also successfuterovering hitherto hidden homology
relationships by stripping away the noise creatgdsbtore contributions from non-fold-
critical, non-globular protein regions.

Methods

Reconstruction of HMMER scores and E-values

Generally speaking, the log-odd score of an aligitméetween the HMM hidden sequence
X and an observed hit sequencef lengthL can be re-computed by summing up a set of
emission, transition and a fixed scdreThe general equation for the total score of an

alignment, whereg, ,t, =~ ande .t = are the emission and transition parameters of the
hidden and null model respectively, is given as :
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The respective transition and emission (match serinstate) score for each position can be
retrieved from the respective HMM model file (cehtby hmmbuild). In the case of
HMMERS3 model files, we added an additional stepdovert them to HMMER?2 format (via
hmmconvert —2) prior to the reconstruction stepteNibat the fixed score is independent of
the alignment and it is essentially constant f@a same domain model. The fixed score is
made up of the additional special transition scfikes> B, N- >N, E->C,E->J,C->T, C-

> C, J- > B, J- > J) and annotated in ‘XT’ linetbé& model file.

For the computation of E-value, the maximum Gunax&leme value distribution is used and
is given as :

E=NR,(Sz Y
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where N is the size of the database that was searchedmggj;, /]) are the summary

statistics of the HMM domain model file (‘EVD’ lindfor HMMER2, ‘STATS LOCAL
FORWARD'’ line for HMMER3).

For the creation of the domain models, the follapmemmand and options were used :
(HMMERZ2) hmmbuild -F --amino --fast --gapmax 1

hmmcalibrate --seed 0 --num 5000

(HMMERS3) hmmbuild --amino --fast --symfrac 0.0

hmmconvert -2

For searching domain models against sequence dagbthe following command and
options were used :

(HMMER2) hmmsearch --null2 -E 10
(HMMERS3) hmmsearch --nonull2 --nobias -E 10

As an initial consideration, the’null2 correctiorodel’ and the’nobias’ options were turned
off since (i) it was unclear how these penaltiesemealculated and on which part of the
alignment, particularly for HMMERS, and (ii) it inpves search sensitivity according to the
manuals [38,39].

Regression and fit

Here, the linear relationshipy = v is tested to affirm the reproducibility of the HMEBWR
scores. For each domain, a linear regression (witimbercept) is performed between a set of
original scoresy and reconstructed scordsfor each domain (witk hits) and the associated

slope;ﬁ and the coefficient of determinatigfi is computed.

It is important to note that the regression willggformed on a set of seed sequences’ scores
per domain. Therefore, it is inevitable that theseres would cluster closely. As such, an
extra point at the origin (i.e. 0,0) is added tcleaet of scores to alleviate the bias towards
the high scores. For a set of scores that is wedlagl, the additional point has little impact.

The slopeg is given as :

B ==l (3)




The coefficient of determinatior? is given as :

2= @

Derivation of error estimates model

With respect to a given domain model, an alignnibetiveen the HMM emitted sequence and
the hit sequence can be recomputed by summing gheariate emission, transition and
fixed scores taken from the HMMERZ2/3 model paramset€his reconstructed scové can

be subjected to (i) rounding errors, (i) parametmnversion estimation and (iii)
unavailability of local model parameters ((ii) afig) applies to HMMER3 hmmconvert, see
also Figure 1). Here, an error modelcan be derive to quantify the approximation error

where £ ~ Ny, ,0?) for each given domain model. Collectively, the restaucted scor&V
is related to the original scokeby :

W =v+eg (5)

It follows that the mean and variance of the congmdwise error modet are given as :
1 P
He == (W -v) (6)

o =%Z{(Wi —V.)——:,i(w—v)T 0

for P pairs of original and reconstructed scores.

As a measure against the representative domaie,stt@r error estimate can be written as a
relative measure given as :

g =He (8)

P
where the representative domain score is estinisteg :lzvi .
i=1

Fisher's exact (one-tailed) test for structural/lop residues in high-quality
versus low-quality segments in domain alignment

First consider an alignment between a HMMER seqeiesmed a hit sequence with its
associated DSSP annotations. Then, let the DSSietsie residue be denoted by a set



R.={H BE G| T, $ where H = alpha helix, B = residue in isolatedad®tdge, E =

extended strand that participates in beta ladder3chelix (3/10 helix), | = 5 helix (pi helix),
T = hydrogen bonded turn and S = bend. On the dthed, let the unstructured set be
denoted byR, ={",} where ” and — represent loop residue and aligrtrgap respectively.

Furthermore, let the total high-quality and low-fifyaresidue counts ber and R,
respectively while the total structure and non<ttital residue counts beg and C,

respectively (See Table 5). The total count ofedidues isN . As such, the null hypothesis
is stated as:

Table 52-by-2 contingency table setup for Fishers’ exact test

Outcome
#{H,B,E,G,I,T,S} #",-}
High-quality residues f11 f1o Ry
Low-quality residues fo1 f22 R>
C C, N

H,: The proportion of high-quality residues containing structurelues R_ is no greater than the
low-quality residues containing structure residges

Consequently, the p-value to be tested at a sggmtie level ofy = 0.05 is evaluated via the
hypergeometric cumulative density function in tbkoiwing form:

P(X>f,)=1-P( X< ) (9)

where p(X = f,) =( Ej(c’\:: EJ/(CNJ

Domain quality score

We use the alignment quality measure as adapted Ca@USTALX [62]. The domain
quality score can be calculated for each columtheésequence alignment to measure the
consensus level of amino acid per alignment positBuppose we have an alignment of
amino acid residueg of M sequences witN positions. This can be expressed as :

al]_ a12 a13 .......... al\l
a21 a22 a23 .......... a2\|
aM]_ aM 2 a\/] 3 rererenes QVIN

The consensus vector for columaverR amino acid residueg ={1, 2, 3,...,R} is written as :



[X, % - %] o

Rj Cri Cro v GCgp

where F is the count of residue in columnj, ¢  is the score (taken from BLOSUM62
matrices) of between residuand residu¢. At the same time, the score vector of resiq.]ue
for sequenceat positionj overR residues is given as :

Sj:[qaij Qaﬂ (';é}]

For each sequenceand positior), the distance measure between the consensus cpkmin
the residueaﬂ overRresidues is then given as :

D, = /i(x’ -c.,) (11)

Finally, the quality score for columnj overM sequences is given as :

i DiJ
Qj = % (12)

Since quality scor€) as a distance measure is expected to be neafaen@h consensus
while large for low consensus, it would be moreiiitite to invert and limit the range Gf as
follows :

s _ Q -min{Q,Q . Q}

=1- > 13
T ma{a Q- m{a.Q Q) o &)

IN

Finally, inverted quality scorejj for columnj is normalized by multiplying the ratio of
amino acids (less gaps) over the total sequenges gs :

x QJ_ (14)

~ k
Qj:ﬁ

wherek is the count of valid amino acid residues.

Minimum number of sequences in an alignment

Given an alignment, for each position, Mtbe number of sequences (excluding gaps in the
particular column) and létbe the sum of Bernoulli random variable | (an aadior variable).

The indicator variable emits either a value of doea positive prediction or zero for a
negative prediction. Collectively, this can be vt as the Binomial random variable.



p(X > k):i@jpx(l— 9 (15)

x2k

Under equal chance condition, the null and alterndypotheses are stated as
H,:p<0.5H, :p> 0.F to be tested at a significance level @& 0.05. Under this setup,

the minimum number of sequences per alignmentiposg determined to be at least 5 since
there is insufficient power to reject the null httpesis for sequences below 4. This is because

the smallest p-values fayl =4 is P(X 24)=0.0625 M =3 is P(X=3)=0.125 M =2
is P(XZZ):O.ZE and M =1 is P(le):0.5- All these p-values are larger than the
significance level ofy = 0.05.

Determination of domain-wise quality score cutoff ér low and high-quality
segment

Here, the appropriate cutoff to declare if a gyaditore is high or low is determined. With
respect to a domain alignment, (i) the quality eqeer position and (ii) the number of valid
amino acids per position ignoring gaps are firdedsined. Then, each quality score per
position is classified into the following two class: (i) if the alignment column has less than
5 valid amino acids and (ii) if alignment columrstet least 5 or more amino acids.

The distributions of the two classes of qualityrector SMART (version 6) is shown in
Figure 11. Figure 11A (quality scores for 5 or mamino acids) depicts an interesting
trimodal distribution, most likely, arising from tique distributions of low-quality scores
from weak alignments (left peak), average-qualtgres from the typical alignments (center
peak) and high-quality scores from homogenous alerts (right peak). In contrast to Figure
11B, it is apparent that the lower quality scoresnty originate from alignment positions
with less than 5 valid amino acids which are inthea of weak alignment segments.
Conservatively speaking, the latter distributiomnfe the minimal negative set or the null
hypothesis. To select the desired false-positite 8PR) and true-positive rates (TPR) for
subsequent application, the quality score cutofpesmuted from O to 1 and tabulated in
Table 6. Based on the table, the FPR of 5% correfspto a quality score of at least 0.06 and
renders a TPR of 90%. Note that FPR and TPR asn@s.

Figure 11 The distributions of the two classes of quality score for SMART version 6.
FigureA depicts the quality scores alignment positionS of more amino acids. It is a
trimodal distribution, most likely, arising fromequality scores from weak alignments (left
peak), average-quality scores from the typicalnafignts (center peak) and high-quality
scores from homogenous alignments (right peakjotirast, Figur® shows mostly the low
guality scores from weaker alignment positionsegklthan 5 valid amino acids.




Table 6 Error rates (false-positive and true-positive rates) of quality scores atarious
quality score cutoffs for SMART (version 6)

Cutoff TP FN FP TN FPR TPR
0.01 113960 3217 12650 19966  0.38785 0.973
0.02 111450 5727 6610 26006  0.20266 0.951
0.03 109530 7653 4157 28459  0.12745 0.935
0.04 107900 9277 2813 29803  0.08625 0.921
0.05 106480 10702 2070 30546  0.06347 0.909
0.06 105260 11919 1608 31008  0.04930 0.898
0.10 101690 15491 789 31827  0.02419 0.868
0.20 95355 21823 294 32322 0.00901 0.814
0.30 86126 31052 169 32447  0.00518 0.735
0.40 69734 47444 72 32544  0.00221 0.595
0.50 48713 68465 47 32569  0.00144 0.416
0.60 31278 85900 15 32601  0.00046 0.267
0.70 20413 96765 1 32615  0.00003 0.174
0.80 12727 104450 0 32616  0.00000 0.109
0.90 7473 109710 0 32616  0.00000 0.064
TPR=TD 0 N (16)

FPR=FP L 1N (17)

Similarly, the same procedure was performed on Ffaiease 27). In a similar fashion,
Figure 12A exhibits the same trimodal distributishile Figure 12B once again depicts that
the low-quality scores originates from alignmensipons with less than 5 amino acids or
sparsely aligned segments. Table 7 gives the régpezrror rates (FPR, TPR) for various
quality score cutoff. Based on the table, the FPR% corresponds to a quality score of at
least 0.14 and renders a TPR of 91%.

Figure 12 The distributions of the two classes of quality score for Pfam release 27.
Compared to the distributions from SMART (versignFgureA exhibits the same trimodal
distribution while FigureB also depicts mainly the lower quality scores frosaker
alignment positions with less than 5 amino acids.




Table 7 Error rates (false-positive and true-positive rates) of quality scores atarious
quality score cutoffs for Pfam (release 27)

Cutoff TP FN FP TN FPR TPR

0.01 2479900 21831 265240 267000 0.49835 0.991
0.05 2384300 117450 79402 452830 0.14919 0.953
0.10 2314800 186960 38684 493550 0.07268 0.925
0.12 2292300 209440 31629 500610 0.05943 0.916
0.13 2281400 220350 28938 503300 0.05437 0.912
0.14 2270400 231360 26412 505820 0.04963 0.908
0.15 2259500 242240 24371 507860 0.04579 0.903
0.20 2201800 299960 16844 515390 0.03165 0.880
0.30 2027300 474450 8670 523570 0.01629 0.810
0.40 1718400 783320 4060 528180 0.00763 0.687
0.50 1277700 1224000 1990 530250 0.00374 0.511
0.60 857990 1643800 978 531260 0.00184 0.343
0.70 571700 1930100 21 532210 0.00004 0.229
0.80 361280 2140500 0 532240 0.00000 0.144
0.90 217480 2284300 0 532240 0.00000 0.087

Consequently, we are interested to find segmenasdomain alignment of lengthl . Hence
each segment can be written in set notation swath th

A={a, 8.y duz- &b &0 A g~ @=1 (18)

Where(jak < cutoff (for low-quality segment) O(jak > cutoff (high-quality segment)

Classification of hits in the comparative HMMER2 ard HMMERS3 analysis

In the proposed comparative analysis, the hitsfisegenerated from both HMMER2 and
HMMERS3 using the same domain alignment and searelgathst a common database (e.g.
UniProt). In addition, only hits with E-value ofl0and below (as suggested by Sean Eddy in
his original HMMER2 manual) are considered.

Using this E-value criterion, one can then defiaehehit (whether HMMER2 or 3) as true
positive (TP), false negative (FN), true negatiVBlY and false positive (FP) based on the E-
values of its total score, high-quality segmentrascand low-quality segment score.
Essentially, the TP and FN hits belong to a pasiset while the FP and TN hits belongs to a
negative set.

The type of hits and associated conditions aredish Table 2. For completeness sake,
undefined type (?) has been included. The lattaraz@ur when the fixed score causes the
total score to become insignificant (despite sigaiit high and low-quality score) or vice
versa. In practice, these cases are almost notirgxis

Consequently, the intersection of HMMER2 and HMMER® will result in mainly two
large groups: a paired group and an orphaned grbopelaborate, a paired hit is a hit



covering the same sequence segment by both HMMEBERZHMMER3. An orphaned hit is
() a hit scored on the same sequence but nonapmrlg segments by HMMER2 and
HMMERS; or (ii) a hit covered by either HMMER2 oMHMERS3 only.

In the paired group, one can further sub-divide HIMMER?2/3 hits into four classes of (i)

positive concordance hits where both HMMERZ2/3 mimi hits as positive, (i) negative

concordance hits where both HMMEr2/3 mark the h#snegative (iii) discordance type 1
where HMMER2 marks the hits as positive but HMMERSErks them as negative and (iv)
discordance type 2 hits where HMMER2 marks the &gsnegative but HMMER3 marks
them as positive. The orphaned groups contain riuteaclusive hits that are found by

either HMMER2 or HMMERS3. See Table 3 for detailss guch, the positive and negative
concordance rates are given as :

- + +
PosmveConcordanceTPTP TPFN+ FNTR FNFR (19)

cou nLairedhits

, + +
NegatlveConcordanceTNTN FPTN TNFR FPH (20)

Count?’airedhits
discordanceTyde+ discordanceTy (21)

cou n%airedhits

TotalDiscordances

Meanwhile, classes that contain the FN and FPangf high interest in this work. A FN hit
is a positive hit that has been obscured due &ed to score an alignment for the low-quality
segment while a FP hit is a negative hit that leenlxrarried over to significance due to the
high-scoring low-quality segments. To quantify false-negative and false-positive rates in a
given domain model, the formulas are given as :

ENrate= 21FN  _ TPFEN+ FNTP+ FNFN (22)
Coung’airedhits Counpaimdhits

FPrate= 21FP  _ TPEN+ FNTP+ FNFNF= (23)
Coung’airedhits CounF’ai"ec’hits

SEG-derived domain model probabilities and high/lowcomplexity segments

For each seed sequence in a domain alignment, dhs gere first removed and then
predicted using the SEG low-complexity sequencedipter [67] with the following
parameters : windows size = 25, lower cutoff =&hél upper cutoff = 3.2.

If a residue is flagged as low-complexity by SEGert its corresponding position in the
domain alignment is marked as 0 to indicate a megarediction, otherwise, it takes a value
of 1 to indicate a positive prediction. Essentialyach column in the alignment will be
marked by 1's or 0’s and can be viewed as a suBeafoulli random variables. Then to test
for the significance of positive predictions in kadignment column, a p-value (see equation
(15)) is calculated and tested at a significangellef 0.05. If the null hypothesis is rejected,
the expected positive prediction cout is calculated as :

Keyo = P( X2 K)x k (24)



Otherwise, Kexo is set to zero. Finally, the per-column probapilindicating that the

consensus column (wittd sequences) is representative of a high-compleagiglue (or fold-
critical surrogate) is given as:

0.01 if k=0

Pop =1k, (25)
XPM if otherwise

Consequently, the SEG-derived segments of the doratignmentjGallibe obtained via
equation (18) at a cutoff of 0.8 (i.epexpz(;utoff implies high-complexity while

Peyp < CUtOS implies low-complexity).
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Additional files

Additional_file_1 as ZIP

Additional file 1 Zip-archive of the software DissectHMMER. Thislawe contains all files
to create a program executable for dissecting¢beedor a given HMMER?2/3 protein
domain model — query sequence alignment.

Additional _file_2 as PDF

Additional file 2: Table S1 This table contains the examples of validatedefhiss from 5
Pfam domainsRF01298.13 Lipoprotein5, PF04814.8 HNF-1 N, PFO583A2SL,
PF09110.6 HAND, PF10390.4 E).bnd validated true hits from 3 Pfam domains
(PF0O0004.24 AAA, PF00106.20 adh_short, PF01226.¥2nEBlir_trang. The segmentation
of domain models is based on the alignment qusdioye. The data presented is
complementary to Table 1 in the main text.
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