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Abstract 

Background 

Protein sequence similarities to any types of non-globular segments (coiled coils, low 
complexity regions, transmembrane regions, long loops, etc. where either positional sequence 
conservation is the result of a very simple, physically induced pattern or rather integral 
sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, 
these considerations regularly escape attention in large-scale annotation studies since, often, 
there is no substitute to manual handling of these cases. Quantitative criteria are required to 
suppress events of function annotation transfer as a result of false homology assignments. 



Results 

The sequence homology concept is based on the similarity comparison between the structural 
elements, the basic building blocks for conferring the overall fold of a protein. We propose to 
dissect the total similarity score into fold-critical and other, remaining contributions and 
suggest that, for a valid homology statement, the fold-relevant score contribution should at 
least be significant on its own. As part of the article, we provide the DissectHMMER 
software program for dissecting HMMER2/3 scores into segment-specific contributions. We 
show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that 
it is useful in automated decisions about homology for instructive sequence examples. To 
generalize the dissection concept for cases without 3D structural information, we find that a 
dissection based on alignment quality is an appropriate surrogate. The approach was applied 
to a large-scale study of SMART and PFAM domains in the space of seed sequences and in 
the space of UniProt/SwissProt. 

Conclusions 

Sequence similarity core dissection with regard to fold-critical and other contributions 
systematically suppresses false hits and, additionally, recovers previously obscured homology 
relationships such as the one between aquaporins and formate/nitrite transporters that, so far, 
was only supported by structure comparison. 
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Background 

The modus operandi of the modern day sequence homology concept [1,2] is founded on two 
inductively proven implications: (i) the inference of evolutionary history from sets of 
homologous protein sequences (e.g. 1964, fibrinopeptides [3]; 1967, cytochrome c [4]) to 
build believable phylogenetic trees [5,6]; (ii) the inference of homology for functionally 
uncharacterized sequences with high sequence similarity to proteins with characterized 
structure and/or function through the trinity of sequence-structure-function relationship (e.g., 
in 1967, lactalbumin model was built using the X-ray coordinates of lyzosome where the two 
sequences are concluded to be homologous for being 35% identical [7]; in 1986, angiogenin 
is homologous to pancreatic ribonuclease where the X-ray structure of the latter is known 
[8,9]). 

In both proofs, there are some crucial, yet problematic assumptions [10]. In the first 
implication, it requires the antecedent that the sequences are homologous (the event of 
common evolutionary origin p), then, as a consequence, the sequences are expected to be 
high in similarity (event q; thus, we have p q→ ). Whereas this first implication appears 
quite acceptable (as well as the contrapositive form q p¬ → ¬ , low sequence similarity 
would rather imply absence of homology though evolution might have erased sequence 
similarity), the second one is by far not obvious. In the proof of the second implication where 



structure/function similarity is concluded from high sequence similarity (actually q p→ ), 
the conserved key amino acids in the uncharacterized sequence for concluding similarity to 
the structure/function of the well-studied protein need to be those that correspond to the 
hydrophobic patterns responsible for the 3D structure formation and the residues critical for 
binding/catalysis/etc. To note, in both cases of inductive proofs, the proteins under scrutiny 
were soluble, globular proteins of limited size without non-globular segments. 

Thus, homology has the precise meaning of “having a common evolutionary origin” but it 
also carries the loose meaning of “possessing sequence similarity or being matched”. In 
addition, homology between sequences is always a hypothesis while similarity, being a 
measurable fact, can be attributed to either chance, convergent evolution or common ancestry 
[11-13]. In other words, high sequence similarity is a necessary but insufficient condition for 
concluding homology. 

Fortunately, sequence similarity by chance can be eliminated via stringent statistical criteria 
like E-value cutoffs in Blast [14] or HMMER-based [15,16] sequence searches. Nevertheless, 
the statistical cutoff does not help in reversing the conditional statement p q→  into q p→  
since the issue of distinguishing between convergent evolution and common ancestry among 
hits of high similarity is non-trivial. As a guide, similarities to any types of non-globular 
segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. 
where either positional sequence conservation is the result of a very simple, physically 
induced pattern or rather integral sequence properties are critical) are pertinent sources for 
mistaken homologies [10,17-19]. Although this issue has been mentioned even in early work 
[2], regretfully, these considerations regularly escape attention in large-scale annotation 
studies since, often, there is nothing to substitute manual handling of these cases. Quantitative 
criteria are required to suppress events of function annotation transfer as a result of false 
homology assignments. Our previous work has shown that the exclusion of undesirable signal 
peptides (SPs) and simple transmembrane helices (TMs) in protein domain models can 
suppress many unrelated sequence hits and even reveal true homologies that, otherwise, 
would have disappeared in the noise [10,19-21]. 

Standard alignment tools (e.g. BLAST [14], HMMER [15,16,22]) and domain libraries (e.g. 
SMART [23,24], Pfam [25,26]) have become the obligatory components of many modern-
day automated annotation pipelines for detecting homology and, hence, to infer the functions 
of many unknown sequences accumulating in the relentlessly growing sequence databases. 
But these automated packages operate strictly in the similarity space with preset score or, 
equivalently, E-value cutoffs. Thus, statistically significant similarities of any aligned pieces 
following as the program outputs are declared as homologies without any alternative 
consideration of convergence cases. The latter operation q p→  is a non-equivalent converse 
statement of the original proof p q→ . Indeed, this is the bane of current sequence search 
approaches that, frequently, lead to wrongful protein function predictions or annotations, 
especially when one attempts to extrapolate very deep into sequence space [27-29]. 

To alleviate the abovementioned issue, we reiterate that the working principle of the sequence 
homology concept is based on the similarity comparison between the structural elements, the 
basic building blocks for conferring the overall fold of a protein which in turn characterizes 
its biological function [30]. To note, the issue of alignment segmentation into blocks of 
higher quality more relevant for structure, fold and function conservation has been discussed 
widely in context of multiple alignment generation, fold recognition and threading [31-34]. 



Therefore, a viable approach for improving the existing sequence searches is to dissect each 
total alignment into two types of segments. The first class is suggestive of structured, 
essential components providing a conserved, complex hydrophobic/hydrophilic sequence 
pattern (termed “fold-relevant”, “fold-critical” or “structured” segments) possibly 
complemented by further, function-critical positions. The other group of segments includes 
all types of non-globular segments, very long loops and other elaborations in 3D structures, 
etc. that are not under the same fold/function conservation evolutionary pressure (termed 
“remnant” segments) [17]. The purpose is to independently re-evaluate the respective two 
score sums for statistical significance, subsequently. As a necessary condition to be 
considered as a valid hit, the total score of fold segments should either be more statistically 
significant than the score sum of remnant segments or, minimally, be statistically significant 
on its own. 

To further emphasize, the concept of a globular domain has a deeply-rooted notion where it 
implies a sequence segment (or several of those, a domain does not need to be contiguous) 
having an independent tertiary structure (i.e., an autonomous hydrophobic core), it folds and 
melts autonomously. Its sequence evolves as a unit in phylogeny [30]. The unsettling thing is 
that a sizeable number of domain models in protein domain libraries often represent 
something else, not a globular domain in the sense as described above. The model might 
consist of several globular domains or contain non-globular additions. Since the sequence 
homology-based annotation transfer in the case of low sequence identity is applicable only 
for the single globular domain, some type of model dissection becomes intuitively important. 
One can either go via the work-intensive route of creating new, elementary domain model 
libraries or, alternatively, follow the path of score dissection with regard to the contributing 
sequence segments. Generally speaking, the idea of score dissection is more generic and is 
applicable to any existing sequence-based methods (whether Blast-based [14], HMMER-
based [15,16,22] or profile-profile-based [35,36]) as long as one can reconstruct the 
alignment scores from the various parameterization of the search algorithms. In addition, 
score dissection does not require the original algorithms to be modified. 

In this work, we achieved four main objectives. First, we created an algorithm and the 
software tool DissectHMMER (provided as supplement to this MS [37]) that can re-compute 
the scores of HMMER2 and HMMER3 and assign the respective contributions to predefined 
query – domain model alignment segments. We were able to achieve good replication of the 
log-odd scores/E-values generated by both HMMER2 and HMMER3 across all the seed 
sequences in SMART and Pfam domains. Second, we show the usefulness of this tool in case 
studies where dissecting the alignment scores into fold-critical and remnant contributions 
(using PDB/DSSP information) enables us to identify false hits that are statistically 
significant for the total HMM model and, at the same time, we could elucidate previously 
insignificant true hits among the truly false ones. 

Third, to generalize the dissection framework to domains without PDB/DSSP representation, 
the quality score based on alignment quality was introduced. Out of 635 SMART and 5876 
Pfam domains with structures, 537 SMART and 4771 Pfam domains were found to be 
enriched with structural residues in their high-quality segments. This was more than 80% of 
the statistically testable cases. Thus, the quality score is justifiable surrogate for estimating 
fold-related and remnant segments in domain models. Importantly, this and similar criteria 
can be applied to segmenting HMM models in domain libraries without having the domain 
alignments to be re-edited or the HMMER searches to be rerun. 



Finally, the application of the dissection framework (using quality score) on the seed 
alignments of SMART and Pfam domains gave an average positive concordance rates of 
almost 100% and a negative one of less than 1%. The latter implies that almost all of the seed 
sequences were recognized correctly as true hits. Meanwhile, the dissection of alignment 
results from searches against the UniProt/SwissProt for these SMART and Pfam domains 
returned average false-positive rates of less than 1% but average false-negative (FN) rates of 
7.63% (SMART) and 4.86% (Pfam). The latter presents an opportunity to recover previously 
obscured homologous relationship between the FN hits and its associated domain model. 
Filtering for domain models that have exceptionally high error rates also allows finding those 
cases where reconsidering the seed alignment might be useful. 

Results 

Methodology for the reconstruction of HMMER2 and HMMER3 scores 

In the current implementation of the HMMER packages (HMMER2 [15,38] and HMMER3 
[16,39]), a single, total log-odd score is returned for each domain-to-sequence alignment. 
Fundamentally, each score is composed of two types of contributions: the positional scores 
(made between the HMMER emitted sequence and the hit sequence) and the position-
invariant scores (Figure 1 designed after Figure one in [39]). 

Figure 1 Scheme of an HMM protein domain model. This figure is adapted after Figure 
one in [39]. Blue lines show transitions for which local model parameters are not delivered by 
hmmconvert for HMMER3. 

The positional scores are composed from a series of emission (at each state; e.g. M1/D1/I1) 
scores and transition (state-to-state; e.g. M1- > I1, M1- > M2) scores where M/D/I are match, 
delete and insert states. In the case of the invariant scores, they account for the fixed 
transition entry scores (e.g. N- > B, B- > M) and exit scores (M- > E, E- > C) for each 
domain-to-sequence alignment. These are added to the positional scores to give the final log-
odd score of the alignment. As a rule, these positional and position-invariant components are 
retrievable from the respective HMM model files provided with domain libraries. Then, the 
reconstruction of the HMMER scores follows the straightforward arithmetic computations as 
described in equation (1) (see Methods). 

In fact, the score reconstruction has already been applied on HMMER2 glocal (align a 
complete model to a subsequence) and global (align a complete model to a full sequence) 
outputs in one of our earlier works [10]. Therefore, the score reconstruction procedure should 
logically be directly applicable to the HMMER3 domain-to-sequence alignments. 

However, two issues ensue to complicate the straightforward procedure. First, the current 
implementation of HMMER3 [39] lacks support of the glocal/global search mode. Hence, 
local alignments are to be expected since there is no way to enforce glocal/global alignments. 
For the cases of seed sequences that are closely related to the domains, the local alignments 
will somewhat resemble the glocal/global alignment generated by HMMER2 and the 
HMMER2 score reconstruction can still achieve good replication results. But for many cases 
of fragmented local alignments, their reconstruction will have less precision in comparison 
due to the following issues. 



This problem stems from the exclusion of certain invariant score parameters during the 
conversion of HMMER3 model files to HMMER2 format. Regretfully, the conversion is 
necessary to export the HMMER3 null model parameters (as part of the log-odd score 
parameters) since they are embedded in the HMMER3 program code, the second major issue. 
In contrast, the HMMER2 null model parameters are already captured in their model files. To 
note, the HMMER3 software suite only allows for model conversion (via hmmconvert -2) 
from the HMMER3 local model to the HMMER2 glocal/global model. In the process, only 
the first HMMER state (B- > M1, B- > D1; see Figure 1) and last state (MK- > E, DK- > E; see 
Figure 1) were kept while the other transition log-odd scores (e.g. B- > M2..K-1 shown by blue 
lines in Figure 1) were excluded from the converted HMMER3 model files since these 
parameters are not part of a global model. Therefore, the reconstruction of HMMER3 local 
alignment score is bound to suffer some estimation errors inherently due to the unavailability 
of these parameters for the straightforward summing. 

In hindsight though, the estimation is not detrimental to the overall accuracy of HMMER3 
score reconstruction as demonstrated by the subsequent section. It is in fact only slightly less 
accurate than the HMMER2 reconstruction. Only in cases where HMMER3 returns heavily 
fragmented alignments, the reconstruction error becomes noticeable; yet, it is still sufficiently 
small to not interfere in the significance analysis of the segmental subscores. 

In this work, a program – DissectHMMER, was written to compute the reconstructed score 
relative to pre-defined alignment segments using the alignment (the HMM output) and the 
HMM model file as inputs independent on the HMMER suite version used (2 or 3). The 
algorithmic detail is described in the Methods section. The code is provided as Additional file 
1 (as zip archive and at the accompanying WWW site [37]). 

Reproducibility and error estimation of the reconstructed HMMER log odd 
scores 

To summarize, the score calculation in the various HMMER versions is a complicated routine 
with some parts not explicitly documented in the literature. Besides algorithmic assumptions, 
numerical issues such as rounding errors also play a role. Thus, it cannot be expected that the 
reconstructed scores exactly match the scores reported by HMMER but it is close enough for 
the purpose of reconstructing the segmental contributions to the total score. 

To test the score reconstruction workflow, the seed alignments from SMART version 6 and 
Pfam release 27 were used. In comparison to SMART, the current Pfam library is about 12 
times larger and, hence, the rigor of the scores reproduction was truly being tested in this 
case. In total, 735 SMART domains (excluding 73 domains with less than 5 seed sequences) 
and 12121 Pfam domains (excluding 2711 domains with less than 5 seed sequences) were 
examined. 

For each domain alignment, the HMMER model is first built (using hmmbuild with null2 
option off) and, then, it is searched against (using hmmsearch -F) the same set of seed 
sequences. For each seed sequence, the alignments reported are considered true hits. By this 
constraint, both HMMER2 and HMMER3 share the same search space and, hence, the 
alignments generated by both are expected to be similar (if not identical). Next, the HMMER 
log-odd scores for the total alignment were reconstructed as described in Methods (see 
equations (1 and 2)). 



Once this computation was completed for all seed sequences of a given domain, linear 
regression analysis was performed against the original scores (see equations (3 and 4) in 
Methods). The regression analysis output, in terms of slope (β̂ ) and coefficient of 

determination ( 2r ) as goodness of fit, is plotted for both SMART (version 6) and Pfam 
(release 27) domains in Figure 2. Figure 2A and B depict the histograms of the slopes ̂β  for 
the original versus reconstructed scores for SMART domains calculated for HMMER2 and 
HMMER3, respectively, while Figure 2C and D depict the histograms of the slopes ̂β  for the 
Pfam domains. Generally speaking, the HMMER2 results exhibit high reproducibility at an 
average β̂  with an ideal value of 1.000 (SMART/Pfam) with small standard deviations of 
0.001 (SMART) and 0.002 (Pfam). In comparison, HMMER3 results also show good, though 
slightly worse reproducibility with average β̂  of 1.015 ± 0.017 (SMART) and 1.017 ± 0.013 
(Pfam). 

Figure 2 Regression analysis output (slope β̂  and coefficient of determination 2r ) for 
both SMART (version 6) and Pfam (release 27) domains. Figure A and B depict the 

histograms of the slopes β̂  for the original versus reconstructed scores for SMART domains 
calculated for HMMER2 and HMMER3 respectively while Figure C and D depict the 

histograms of the slopes β̂  for the Pfam domains. The HMMER2 results exhibit high 

reproducibility at an average β̂  of 1.000 ± 0.001 (SMART) and 1.000 ± 0.002 (Pfam) while 

HMMER3 results also show good, though slightly worse reproducibility with average β̂  of 
1.015 ± 0.017 (SMART) and 1.017 ± 0.013 (Pfam). Figures E, F, G and H shows the 

corresponding histograms for the goodness of fit, in terms of 2r . Similarly, the HMMER2 

reconstruction exhibits excellent fit at an average 2r  of 1.000 ± 0.003 (SMART) and 1.000 ± 

0.007 (Pfam). HMMER3 reconstruction closely followed at an average 2r  of 0.997 
(SMART) and 0.998 (Pfam) over a slightly larger variation of 0.007 (SMART/Pfam). In 

hindsight, all values of β̂  and 2r  converges to one with little variation and this implies that 
the reconstruction workflow for HMMER2/3 scores are highly reproducible. 

The goodness of fit, in terms of coefficient of determination (r2), for the original versus 
reconstructed HMMER2 and HMMER3 scores are depicted in Figure 2E, F, G and H 
respectively as histograms. Again, the HMMER2 reconstruction exhibits excellent fit at an 
average r2 of 1.000 (SMART/Pfam) and small standard deviations of 0.003 (SMART) and 
0.007 (Pfam). HMMER3 reconstruction closely followed at an average r2 of 0.997 (SMART) 
and 0.998 (Pfam) over a slightly larger variation of 0.007 (SMART/Pfam). Taken together, 
the general trend where all values of β̂  and r2 converges to one with little variation, implies 
that the reconstruction workflow for HMMER2/3 scores are highly reliable and reproducible. 
The reconstruction works well for the relatively small SMART library as well as for the huge 
Pfam library. 

Next, the relative error estimates per SMART/Pfam domain were examined (Figure 3, see 
equations (5, 6, 7 and 8) in Methods). To note, the scores generated for various seed 
sequences of one domain are quite similar to each other in the case of HMMER2, mostly, 
because the glocal mode enforces alignments of similar length. In the case of HMMER3, the 



alignments are often (almost) identical with those in the HMMER2 case. Yet, the alignments 
for a large number of many other seed sequences are heavily fragmented. Since we are 
interested in assessing the error of reconstruction over the representative domain score and 
not over each individual alignment fragment where, especially, the assignment of gap scores 
to the individual fragment scores by HMMER3 is difficult to recover as discussed above, we 
rather compare the total error of reconstruction for the seed sequence – domain alignment 
with the sum of scores for all the seed – domain alignment fragments reported. Therefore, we 
estimate the error for each domain as ratio between the sum of deviations between original 
and reconstructed score for each seed sequence on the one hand and the sum of original 
scores for each seed sequence on the other hand. Figure 3A, B and C, D show the histograms 
of the relative errors for the HMMER2 and HMMER3 results and the SMART and PFAM 
domain databases, respectively. The majority of the reconstruction errors by HMMER2 are 
well below the satisfactory 0.01 margin (or 1% of the average seed score per domain) and at 
an average of 0.0028 (SMART) and 0.0025 (Pfam) as depicted by the vertical dashed lines. 
Similarly, the reconstruction errors attributed by HMMER3 are well below the 0.05 line (or 
5% of the average seed score per domain). The average relative errors are about 0.0049 and 
0.0010 for SMART and Pfam domains, respectively (see vertical dashed lines). As a general 
trend, the relative errors tend being dwarfed by their respective domain-wise alignment 
scores for all seed sequences. 

Figure 3 Relative error estimates per SMART/Pfam domain. Figures A, B and C, D show 
the histograms of the relative errors for the HMMER2 and HMMER3 results and the SMART 
and PFAM domain databases respectively. The average reconstruction errors by HMMER2 
were 0.0028 (SMART) and 0.0025 (Pfam) and mostly well below the 0.01 margin (or 1% of 
the average seed score per domain) as depicted by the vertical dashed lines. Likewise, the 
average reconstruction errors attributed by HMMER3 are 0.0049 and 0.0010 for SMART and 
Pfam domains respectively (See vertical dashed lines). They are well below the 0.05 line (or 
5% of the average seed score per domain). Generally speaking, the relative errors tend being 
dwarfed by their respective domain-wise alignment scores for all seed sequences. 

Taken together, the results show that the reconstruction recovers the original score within a 
few percent at worst. Since we wish to make a qualitative conclusion whether a certain 
alignment segment of the total query sequence – domain alignment makes a substantial or 
even overwhelming contribution to the total score, the reconstruction algorithm with all 
errors taken into consideration appears well suited for the purpose. 

This large scale study of seed sequence scores also allows comparing some aspects of 
HMMER2 and HMMER3 program behaviors. Figure 4 shows the HMMER2 versus 
HMMER3 score averaged over all seed sequences for each domain plotted for all domains 
(Figure 4A SMART, Figure 4B Pfam). As a trend, the HMMER3 scores (y-axis) are clearly 
smaller than the HMMER2 scores (x-axis). They are strongly correlated (the goodness of fit 
r2 is 0.9692 for y = 0.6785x in the case of SMART and 0.9867 for y = 0.6629x in the case of 
Pfam) but not equivalent. To note, this work was not planned as a comparative study between 
the two tools and we strived as much as possible to focus on conclusions supported by either 
program. 

Figure 4 over all seed sequences) for SMART (version 6) and Pfam (release 27) 
HMMER2 versus HMMER3 average domain score (averaged over all seed sequences) 
for SMART (version 6) and Pfam (release 27). Figure A shows the comparison of 
HMMER2 versus HMMER3 domain scores for 735 (out of 808) SMART domains while 



Figure B shows the comparison for 12121 (out of 14831) Pfam domains. As a trend, the 
HMMER3 scores are smaller than the HMMER2 scores but strongly correlated (the goodness 

of fit 2r  is 0.9692 for y = 0.6785x in the case of SMART and 0.9867 for y = 0.6629x in the 
case of Pfam). 

Dissection of sequence alignments accentuates homology evidence in true hits 
while deemphasizes false hits 

The idea of dissecting a HMM score into several segments of a larger alignment stems from 
the observation that the influence of well conserved, truly homologous alignment segments 
on the score can be overwhelmed by score contribution from spurious alignment extensions. 
In our previous work [10,19], we have shown that the score enhancements from aligning non-
relevant SP/TM hydrophobic stretches can create the appearance of high scores and 
significant E-values of alignments between unrelated sequences. 

At the same time, it is well accepted that structural elements are the basic building blocks for 
conferring the overall fold of a protein which in turn characterizes its biological function. 
Therefore, for the purpose of inferring homology, one should evaluate the score of the 
structural, fold-relevant segments independently from the score associated with remnant 
segments. Figure 5 shows an example of such a segmentation highlighting the fold-relevant 
alignment pieces (based on the seed alignment of PF05134.8 T2SL). Furthermore, as a 
necessary condition to be considered as a true hit, the structural, fold-relevant score should 
either be more statistically significant than the score for other segments or, at least, it should 
be statistically significant on its own. The postmortem dissection of the alignment can 
provide additional insights beyond what a standard single total score/E-value could, as 
illustrated through a selected, validated set of 13 hits (some of them are true and and others 
are actually false) found by 8 Pfam domains (PF01298.13 Lipoprotein 5, PF04814.8 HNF-
1_N, PF05134.8 T2SL, PF09110.6 HAND and PF10390.4 ELL, PF00004.24 AAA, 
PF00106.20 adh_short and PF01226.12 Form_Nir_trans) as listed in Table 1. 

Figure 5 Segmentation by DSSP and by quality score for an example alignment. We 
show the seed alignment of PF05134.8 (T2SL, type II secretion system protein L). Below the 
alignment, two segmentations are presented. Red and green segment in the upper line are 
assigned labels “H, B, E, G, I, T, S” the DSSP [40] file for the structure 1 W97 (chain L) and 
together represent the respective fold-relevant part. In the lower line, the segmentation is 
based on alignment quality giving rise to black (fold-relevant) and grey (remnant) segments. 



Table 1 Examples of validated false hits from 5 Pfam domains (PF01298.13 Lipoprotein5, PF04814.8 HNF-1 N, PF05134.8 T2SL, 
PF09110.6 HAND, PF10390.4 ELL) and validated true hits from 3 Pfam domains (PF00004.24 AAA, PF00106.20 adh_short, PF01226.12 
Form_Nir_trans)  
Domain name Hit name HMMER version  Total score (E-

value) 
Fold-critical score 
(E-value1) 

Remnant score (E-
value2) 

Ratio of E-value1: 
E-value2 

PF01298.13 Lipoprotein5 1.sp|O60841|IF2P_HUMAN (Eukaryotic translational 
initialization factor 5B) 

HMMER2 −183.8 (3.1) −164.6 (7.6e-1) −7.6 (6.7e-6) 1.1e + 5 

HMMER3 30.1 (6.7e-8) −2.9 (5.8e + 4) 22.8 (1.0e-3) 5.8e + 7 

Domain length: 979 2.sp|Q05D44|IF2P_MOUSE (Eukaryotic translational 
initialization factor 5B) 

HMMER2 −184.6 (3.3) −150.5 (2.7e-1) −24.9 (2.4e-5) 1.1e + 4 
HMMER3 26.5 (8e-7) 4.4 (3.9e + 2) 33.9 (4.6e-7) 8.5e + 8 

PDB:3V8U|B 3.sp|Q5RDE1|IF2P_PONAB (Eukaryotic translational 
initialization factor 5B) 

HMMER2 −185.0 (3.4) −137.5 (1.0e-1) −33.2 (4.5e-5) 2.2e + 3 

HMMER3 28.6 (1.8e-7) −2.9 (5.8e + 4) 22.2 (1.5e-3) 3.9e + 7 
4.sp|Q7XTT4|NUCL2_ORYSJ (Nucleolin 2) HMMER2 −190.8 (5.2) −130.5 (6.1e-2) −50.2 (1.6e-4) 3.8e + 2 

HMMER3 13.2 (8.2e-3) −5.0 (2.0e + 5) 14.5 (3.3e-1) 6.1e + 5 

PF04814.8 HNF-1_N (Hepatocyte nuclear factor 
1) 

5.sp|Q6PDK2|MLL2_MOUSE (Histone-lysine N-
methyltransferase 2D) 

HMMER2 −70.2 (1.5) −45.6 (1.1e-2) −15.4 (2.5e-5) 4.4e + 2 
HMMER3 24.5 (5.1e-6) 0.0 (2.9e + 4) 32.3 (4.1e-6) 7.1e + 9 

Domain length: 250 6.sp|P41046|CORTO_DROME 
(Centrosomal/chromosomal factor) 

HMMER2 −75.5 (4.4) −55.3 (7.6e-2) −6.1 (3.9e-6) 2.0e + 4 

HMMER3 23.0 (1.6e-5) 0.0 (2.9e + 4) 32.9 (2.8e-6) 1.0e + 10 
PDB:1IC8|B 7.sp|Q54RP6|DHKL_DICDI (Hybrid signal transduction 

histidine kinase L) 
HMMER2 −75.6 (4.5) −52.5 (4.3e-2) −6.9 (4.5e-6) 9.6e + 3 
HMMER3 32.6 (1.7e-8) 0.0 (2.9e + 4) 47.7 (8.3e-11) 3.5e + 14 

PF05134.8 T2SL (Type II secretion system 
protein L) 

8.sp|Q8VHG2|AMOT_MOUSE (Angiomotin) HMMER2 −81.4 (4.5) −69.3 (7.6e-1) 10.5 (6.1e-6) 1.3e + 5 

Domain length: 321  HMMER3 18.2 (1.8e-5) 8.4 (3.6e + 1) 28.2 (3.5e-5) 1.0e + 6 
PDB:1 W97|L       
PF09110.6 HAND (Chromatin remodeling 
factor ISW1a) 

9.sp|P19338|NUCL_HUMAN (Nucleolin) HMMER2 −39.7 (2.1) −40.8 (2.6) 16.7 (3.6e-5) 7.2e + 4 

PDB:2Y9Z|A  HMMER3 23.3 (2.7e-5) 3.7 (2.3e + 3) 22.1 (5.0e-3) 4.6e + 5 

PF10390.4 ELL (RNA polymerase II elongation 
factor) 

10.sp|P34103|PK4_DICDI (Protein kinase 4) HMMER2 −70.7(3.7e-2) −49.4 (2.9e-3) −13.0 (3.9e-5) 7.4e + 1 

Domain length: 139  HMMER3 94.5 (2.5e-27) 0.0 (9.2e + 3) 99.8 (5.5e-27) 1.7e + 30 
PDB:2E5N|A       
PF00004.24 AAA (ATPase family associated 
with various cellular activities) 

11.sp|P51394|CHLI_PORPU (Magnesium-chelatase 
subunit ChII) 

HMMER2 −27.2 (1.8) 38.5 (2.2e-6) −48.2 (1.4e + 2) 1.6e-8 

Domain Length: 252  HMMER3 11.3 (1.1e-1) 22.4 (3.1e-3) 6.0 (3.1e + 2) 1.0e-5 

PDB:1LV7|A  HMMER3 5.6 (5.9) 26.4 (1.9e-4) −2.9 (1.4e + 5) 1.4e-9 
PF00106.20 adh_short (Short chain 
dehydrogenase) 

12.sp|Q9UXR8|HEM1_METKA (Glutamyl-tRNA 
reductase) 

HMMER2 −49.7 (1.7e-1) 13.7 (1.1e-5) −54.6 (9.0e-1) 1.2e-5 

Domain length: 230  HMMER3 23.0 (7.9e-6) 43.1 (1.5e-9) −6.4 (5.3e + 5) 2.8e-15 
PDB:3MJC|B 
PF01226.12 Form_Nir_trans (Formate/nitrate 
transporter) 

13.sp|Q9ATM0|TIP12_MAIZE (Aquaporin TIP 1–2) HMMER2 −109.7 (1.3e-1) −47.5 (1.2e-4) −45.3 (9.4e-5) 1.3 

Domain length: 366 

PDB:3KCU|E 

The segmentation of domain models is based on PDB/DSSP information. 



In retrospect, all hit examples (see Table 1, column 2) were retrieved from the results of 
HMMER2 (glocal-mode) and HMMER3 when searched against the SwissProt/UniProt 
sequence database (see later in the text for the general results of this test). To note, the 
hmmsearch option ‘nobias’ in HMMER3 was turned off to increase the search sensitivity 
(ability to detect true hits) as stated in the manual [39]. For example, the true hit glutamyl-
tRNA reductase (HEM1_METKA) was not detected by HMMER3 when the ‘nobias’ option 
was turned on. Next, the representative structures for the Pfam domains were obtained by 
searching against PDB FASTA database for the most significant hit with E-value < 0.1 using 
the global HMM model (HMMER2) for maximum model coverage. 

Then, the structural residues (carrying “H, B, E, G, I, T, S” labels in the DSSP files) were 
retrieved from the corresponding DSSP annotations [40] with the purpose of dissecting each 
domain alignment into its fold-related/remnant segments so that the final singular fold-related 
and remnant scores with respect to the hits can be derived using the score reconstruction 
procedure from the preceding section. Also, all the hits except for TIP12_MAIZE were found 
by both HMMER2 and HMMER3 (see column 3), although the HMMER3 returned only 
fragmented alignments which offered only partial coverage with respect to the domain 
models (see supplementary website [37] for alignments). The statistical significance E-value 
cutoff for the evaluation was 0.1. 

Based on a collective view of the standard HMMER output scores/E-values in Table 1 
(column 4), the hits produced HMMER2 E-values of between 3.7e-2 to 5.2 and between 2.5e-
27 to 1.1e-1 via HMMER3. At an E-value cutoff of 0.1, the overwhelming majority of the 
hits would be considered false based on HMMER2, yet true by HMMER3. And it would be 
hard-pressed to tell the differences based on the standard total alignment HMMER score/E-
value alone. 

However, once the fold-critical and remnant scores (see Table 1, columns 5 and 6) were 
considered, the distinction between the true and false hits becomes apparent as depicted in 
Figure 6. As a general trend, the fold-related scores of hits 1 to 10 (IF2P_HUMAN, 
IF2P_MOUSE, IF2P_PONAB, NUCL1_ORYSJ, MLL2_MOUSE, CORTO_DROME, 
DHKL_DICDI, AMOT_MOUSE, NUCL_HUMAN, PK4_DICDI) were vastly smaller than 
the remnant scores indicating that they are spurious hits. The corresponding fold-related E-
values spans from 2.9e-2 to 2.6 (HMMER2) and 3.6e + 1 to 2.0e + 5 (HMMER3) against the 
more significant remnant segments’ E-values ranges of 3.6e-6 to 1.0e-4 (HMMER2) and 
5.5e-27 to 3.3e-1 (HMMER3). 

Figure 6 HMMER2 versus HMMER3 average domain score (averaged over all. When 
the fold-critical and remnant scores (see Table 1, columns 5 and 6) were considered, the 
distinction between the true and false hits becomes apparent. The Y = X margin depicts two 
regions: above is where the fold-critical E-values were smaller than the reminant E-values 
and below as vice-versa. As a general trend, the fold-related scores of hits IF2P_HUMAN, 
IF2P_MOUSE, IF2P_PONAB, NUCL1_ORYSJ, MLL2_MOUSE, CORTO_DROME, 
DHKL_DICDI, AMOT_MOUSE, NUCL_HUMAN and PK4_DICDI (see red points) were 
much smaller than the remnant scores indicating that they are spurious hits and their 
corresponding fold-related E-values spans from 2.9e-2 to 2.6 (HMMER2) and 3.6e + 1 to 
2.0e + 5 (HMMER3) against the more significant remnant segments’ E-values ranges of 3.6e-
6 to 1.0e-4 (HMMER2) and 5.5e-27 to 3.3e-1 (HMMER3). In contrast, the fold-related scores 
were larger than the remnant scores for hits CHLI_PORPU, HEM1_METKA (see blue 
points). For TIP12_MAIZE (see blue point), the difference between its fold-related and 



remnant scores was marginal. The corresponding fold-related E-values of 1.2e-4 to 2.2e-6 
(HMMER2) and 3.1e-3 to 1.5e-9 (HMMER3) were more significant than the remnant 
segments’ E-values of 9.4e-5 to 1.4e + 2 (HMMER2) and 3.1e + 2 to 5.3e + 5 (HMMER3). 

In contrast, the opposite trend was observed for hits 11 and 12 (CHLI_PORPU, 
HEM1_METKA) where the fold-related scores were larger than the remnant scores. For hit 
13 (TIP12_MAIZE), the difference between its fold-related and remnant scores was 
marginal. The corresponding fold-related E-values of 1.2e-4 to 2.2e-6 (HMMER2) and 3.1e-3 
to 1.5e-9 (HMMER3) were more significant than the remnant segments’ E-values of 9.4e-5 
to 1.4e + 2 (HMMER2) and 3.1e + 2 to 5.3e + 5 (HMMER3). Thus, the latter three hits are 
rather true homologies in the segment representing the protein fold. 

Furthermore, to investigate the difference in magnitudes between the fold-critical and 
remnant E-values, their ratios (see Table 1, column 7) were taken. A small ratio (<<1) is 
indicative that the fold-related component is more significant than its remnant counterpart 
and, hence, its overall sequence similarity gravitates towards homology. On the other hand, a 
large ratio is suggestive of spurious sequence similarity. At a ratio of 1, both fold-related and 
remnant segments’ components are on-par. As such, with the range of ratios between 7.4e + 1 
to 1.3e + 5 (HMMER2) and between 4.6e + 5 to 1.7e + 30 (HMMER3), hit 1 to 10 are to be 
considered as false hits. And with ratios between 1.6e-8 to 1.3 (HMMER2) and between 2.8e-
15 to 1.0e-5 (HMMER3), hits 11 to 13 are to be labeled as true hits. 

For the alleged false hits (rows 1–4 in Table 1), the sequence architecture analysis was 
performed [41-43] and their false associations with the domains is justified as follows (see 
Figure 7, HMMER2/3 alignments are available at the associated WWW site [37]). The model 
Lipoprotein 5 (PF01298.13, row 1) can be represented by the transferring-binding protein B 
(TbpB) from various bacteria. TbpB is part of the transferring receptor and it is an outer 
membrane protein that is anchored to membrane via a lipidated N-terminus segment [44]. In 
contrast to the model, IF2P_HUMAN, IF2P_MOUSE and IF2P_PONAB are translation 
initialization factors which are essentially cytoplasmic proteins from various eukaryotes 
while NUCL1_ORYSJ is a plant nucleolin which binds RNA in the nucleus. These diverse 
proteins were related spuriously to the model via an N-terminal disordered/low-complexity 
segment with remnant segment’s E-values of 6.7e-6 to 1.6e-4 (HMMER2) and 4.6e-7 to 3.3e-
1 (HMMER3). For the translation initialization factors, this linker segment contains multiple 
phosphorylation sites [45]. Separately, another unrelated domain model HAND (PF09110.6, 
row 4), a chromatin remodeling factor [46], hits the nucleolin (NUCL_HUMAN) again, 
albeit human, on the N-terminal disordered/low-complexity segment with E-values of 3.6e-5 
(HMMER2) and 5.0e-3 (HMMER3). 

Figure 7 Domain architectures of the 10 false (false-positive) hits. The domain 
architectures of 5 Pfam domain models (PF01298.13 Lipoprotein5, PF05134.8 T2SL, 
PF09110.6 HAND, PF10390.4 ELL) revealed that the 10 hits (1:IF2P_HUMAN, 
2:IF2P_MOUSE, 3:IF2P_PONAS, 4:NUCL2_ORYSJ, 5:KMT2D_MOUSE, 
6:CORTO_DROME, 7:DHKL_DICDI, 8:AMOT_MOUSE, 9:NUCL_HUMAN, 
10:PK4_DICDI) are falsely associated to the respective domain models through a significant 
non-structural segment which is typically low-complexity and disordered. 

Next, the model HNF-1 N (PF04814.8, row 2) describes the N-terminus of the homeobox-
containing transcription factor HNF-1 (Hepatocyte nuclear factor 1). The latter contains a 
dimerization sequence and an acidic region which is implicated in transcription activation 



[47]. In contrast, the diversely different false hits MLL2_MOUSE, CORTO_DROME and 
DHKL_DICDI are a methyltransferase, a chromosomal protein and a kinase respectively. 
They are related to the HNF-1 model merely via a small stretch of N- or C-terminal 
disordered segments with E-values of 3.9e-6 to 2.5e-5 (HMMER2) and 8.3e-11 to 4.1e-6 
(HMMER3). 

Meanwhile, the model T2SL (PF05134.8, row 3) describes protein L, an inner membrane 
protein of the bacterial type II secretion system that serves as a critical link between the 
cytoplasmic and the periplasmic part of the Eps-system [48]. In contrast, the mouse 
angiomotin (AMOT_MOUSE) is involved in angiogenesis and regulates the action of the 
angiogenesis inhibitor angiostatin [49,50]. The angiostatin-binding linker segment of the 
angiomotin made a false association to this bacterial domain model with remnant segments’ 
E-values of 6.1e-6 (HMMER2) and 3.5e-5 (HMMER3). 

Finally, the model ELL (PF10390.4, row 5) is a RNA polymerase II elongation factor that 
regulates the polymerase II [51]. Yet, the hit PK4_DICDI, a protein kinase of slime mold, is 
related to the model through a small stretch of disordered/low-complexity linker with 
segmental E-values of 3.9e-5 (HMMER2) and 5.5e-27 (HMMER3). 

For the alleged true hits, the justification of sequence similarity between the hit and domain 
model is best shown by fold similarity, especially for cases of distant homologs (indicated by 
their large E-values) where more sequence divergence is expected. Therefore, structure 
alignment was performed on each pair of representative PDB structures from the hit and the 
domain model using the jCE algorithm [52] (see Figure 8, HMMER2/3 alignments are 
available at the associated WWW site [37]). 

Figure 8 Structural alignments between representative structures of domain model and 
hit sequence for the 3 true (false-negative) hits. The original E-values of these 3 hits (A. 
CHLI_PORPU, B. HEM1_METKA, C. TIP12_MAIZE) were insignificant against the Pfam 
domain models (PF00004.24 AAA, PF00106.20 adh_short, PF01226.12 Form_Nir_trans). 
However, their structural E-values were nevertheless significant (E < 0.1). Indeed, the 
structural alignments of representative structures between domain models and hits showed 
that their RMSD values were between 3.2 to 3.91 and over their full-length sequences. This 
indicated that the domain model and the associated hit sequences were indeed homologous to 
each other. 

The model AAA (PF00004.24, row 6) is a family of ATPases associated with various cellular 
activities. The ATP-dependent metal binding core of the domain’s representative PDB 
structure (1LV7|A) consists of the characteristic Walker A or P-loop motif, Walker B motif 
and sensor motif, each extending beyond a ß-strand [53]. The hit CHLI_PORPU 
(representative structure PDB:1GP8|A) from plant is a magnesium chelatase that is involved 
in chlorophyll biosynthesis. Its ATP core also consists of the three hallmark motifs (Walker 
A/B and sensor motifs) [54]. Although the total HMM’s E-values between the hit and model 
were insignificant at 1.8 (HMMER2) and 1.1e-1, 5.9 (HMMER3), the fold-relevant E-values 
were nevertheless significant at 2.2e-6 (HMMER2) and 3.1e-3, 1.9e-4 (HMMER3). In 
contrast, the remnant segments’ E-values were large at 1.4e + 2 (HMMER2) and 3.1e + 2, 
1.4e + 5 (HMMER3). Independently, a structural alignment revealed that, despite vast 
differences between the loop lengths of the two structures, a reasonable RMSD score of 3.91 
over an alignment length of 255 positions was achievable over the structural elements (See 



Figure 5A). The ATP binding domains of both hit CHLI_PORPU and model AAA are indeed 
homologous. 

Next, the model adh_short (PF00106.20, row 7) is a family of NADP-dependent 
oxidoreductases. Its representative PDB structure (3MJC|A) is an A-type ketoreductases 
consisting of two subdomains, a N-terminal sub-structural domain and a C-terminal catalytic 
subdomain that binds NADP+ and its ß-ketoacyl substrates [55]. On the other hand, the hit 
HEM1_METKA (pdb:1GPJ|A) is a glutamyl-tRNA reductase which essential for initiating 
tetrapyrrole biosynthesis in plants and prokaryotes. Structurally, it consists of 3 domains : a 
N-terminal RNA-binding domain, a NADPH-binding domain and dimerization domain [56]. 
The standard E-values of hit to model were insignificant at 0.17 for HMMER2 but significant 
at 7.9e-6 for HMMER3 over a small fragmented piece. However, both fold-related E-values 
were significant (HMMER2: 1.1e-5, HMMER3: 1.5e-9) while both remnant segments’ E-
values were insignificant (HMMER2: 9.0e-1, HMMER3: 5.3e + 5). Separately, a structural 
alignment between the two PDB structures gave a good RMSD score of 3.52 over 188 
alignment positions between the 3MJC structure and the NADPH-binding domain of 1GPJ 
(See Figure 5B). Again, the structural alignment revealed the major differences in the loop 
lengths. Nevertheless, both hit and domain share a homologous NADP+/NADPH binding 
structure. 

Finally, the model Form_Nir_trans (PF01226.12, row 8) describes the multi-membrane 
formate/nitrite transporter (PDB:3KCU|E) of bacteria that facilitates the formate/nitrite 
transport essential for anaerobic respiration [57]. On the other hand, the hit TIP12_MAIZE is 
a plant aquaporin (representative structure PDB: 1YMG|A) that transport water and small 
neutral solute across the membrane [58]. Interestingly, it has been previously reported that 
the fold of the formate transporter is uncannily similar to the family of aquaporins despite a 
low sequence identity of 9-12% [59], thus raising the question if this transporter is indeed a 
channel. Consistent with previous findings, the structural alignment between the two 
representative structures produced a good RMSD of 3.2 over 273 alignment positions (See 
Figure 5C). Meanwhile, the hit TIP12_MAIZE was only detectable by the HMMER2 domain 
model at an insignificant standard E-value of 0.13, but its fold-relevant segments’ E-value 
was nevertheless significant at 1.2e-4. Interestingly, its remnant segments’ E-value also 
showed high significance at 9.4e-5. The latter suggests that, like the diverse family of GPCRs 
where the loop regions confers the sub-family functions [60,61], a similar role might also be 
expected with the non-fold-related segments in the formate/nitrite/aquaporin family. 

Taken together, we have illustrated that the dissection framework provides the segment-based 
scores (e.g. the fold-related and other segments’ scores) for a more concise assessment of 
sequence similarity as evidence for homology. To emphasize, filtering of compositionally-
bias sequence segment might be unnecessary since false hits will be occluded under this 
framework when their non-fold-related segments appeared significant statistically. Most 
importantly, the framework provides an opportunity to elucidate the obscured true hits hidden 
among the false ones in the twilight E-value range of 0.1 to 10. 

Quality score as a proxy to identify the structural segments of domain models 
for score dissection 

In an ideal situation, the combined PDB/DSSP data provides the best information for 
dissecting a domain model into its fold-related and remaining segments for score 
reconstruction. But currently, only a small portion of domain models have an associated PDB 



structure. As such, one needs a surrogate for estimating the potentially more conserved 
elements and remaining segments for the dissection framework to be applicable on a larger 
set of domain models. 

For this purpose, the alignment quality measure (called quality score further in the text) that 
assesses sequence conservation in CLUSTALX [62] was investigated; yet, the exact form of 
the measure is not critical for us here. For example, one could have relied on the measure 
used in Jalview [63,64] or others [65,66]. As a trend, fold-critical segments will deliver dense 
parts in multiple alignments and, thus, generate high quality scores. In contrast, variable 
loops and man non-globular types of sequence will result in poor multiple alignments and, 
hence, produce low quality scores. As is illustrated by Figure 5, the segmentation based on 
DSSP annotation will, as a trend, correctly estimate fold-relevant segments (or underestimate 
them) whereas the score based on alignment quality tends to segment more generously 
including also other segments besides the most fold-relevant ones. Nevertheless, in the 
subsequent section, we show that the high-quality alignment segments (representative for 
fold-critical segments) still contain significantly higher fractions of residues engaged in 
secondary structural elements compared with low-quality alignment segments (representative 
for fold-irrelevant segments). 

First, the quality score per position for each domain alignment in SMART and Pfam were 
computed (see equations (10, 11, 12,13, 14 and 15) in the Methods). Alignments with less 
than 5 sequences were not considered for the analysis due to insufficient statistical power at a 
significance level of 0.05α = . Next, each alignment position is classified as high or low-
quality based on the appropriate thresholds (see equations (16,17) in Methods). The quality 
score thresholds are at least 0.06 (false positive rate 5%, true positive rate 90%; see Methods 
section “Determination of domain-wise score cutoffs …” and the table therein) and 0.14 
(false positive rate 5%, true positive rate 91%; see Methods section “Determination of 
domain-wise score cutoffs …” and the table therein) for SMART and Pfam domains 
respectively. Finally, the high-quality and low-quality segments per domain alignment were 
derived using equation (18). 

Separately, matching structures were searched for. The global-mode HMM models were built 
using the HMMER2 software suite to maximize for full coverage. The HMM models were 
searched against the PDB FASTA sequences to obtain the most significant hit (E-value at 
least 0.1) with the associated secondary structure residues resolved for each alignment 
position using the DSSP annotations [40], and the number of structural residues (carrying “H, 
B, E, G, I, T, S” labels in the DSSP files) is computed. 

In total, 635 (out of 808) SMART and 5876 (out of 14831) Pfam domains were able to 
retrieve a significant PDB hit that covers the model’s full length. Each of these domain 
models was then subjected to the Fisher’s exact test (see equation (9) in the Methods section 
“Fisher’s exact (one-tailed) test …” and also the table therein) to determine if there is an 
enrichment of structural residues in the high-quality segments against the low-quality 
segments. Interestingly, at a significance level of 0.05α = , 537 (out of 635) SMART 
domains and 4771 (out of 5876) Pfam domains were enriched with structural residues in their 
respective high-quality segments (find lists of domains at the associated WWW site [37]). 
This is more than 80% of the testable SMART/Pfam domains. For the remaining 98 SMART 
domains and 1105 Pfam domains, there is insufficient statistical power to reject the null 
hypotheses. This is supported by a control test where the same 635 SMART and 5876 Pfam 
domains were tested in the opposite direction to see if there is an enrichment of non-structural 



residues in the high-quality segments against the low-quality segments but none was 
significant. Thus as a trend, high-quality alignment segments and secondary structures go 
hand in hand. At the same time, we emphasize that secondary structural elements, as a rule, 
will lead to high-quality alignments, the opposite is not necessarily true; non-globular 
segments might also produce high-quality alignments, especially if the number of sequences 
is not large. For our purpose, it is enough to have the quality score as necessary condition for 
fold-related segments. 

It is also noteworthy to mention that the dissection framework using the quality score were 
applied to the 13 validated examples from the preceding section. The conclusions were 
similar to that of Table 1 except for the cases of aquaporin TIP12_MAIZE and 
HEM1_METKA for HMMER2 (see Additional file 2: Table S1). In addition, the results of 
the SEG-derived dissection (see equations (24 and 25)) for the 13 examples were also 
included; a method that find low-complexity regions as surrogate for long loops and 
intrinsically unstructured segments [67]. Based on the SEG-derived HMMER2 results, the 
conclusions were generally comparable to that of the quality score. However, the SEG-
derived HMMER3 results suffered from a handful of differences and inaccuracies e.g. 5 false 
hits of the Lipoprotein5 (PF01298) domain were concluded as true hits. From this mini study, 
it appears that any inaccuracy in the segmentation of domain models into its fold-critical and 
remnant components will be amplified in the final dissection results. This is especially true 
for the fragmented HMMER3 alignments. From the case study examples, the quality score is 
a better surrogate of PDB/DSSP information for domain model dissection when compared to 
the SEG-derived ones. 

The dissection framework validates the seed sequences in domain alignments 
and systematically identifies the potential false positive and false negative hits 
in HMMER searches 

In this section, the behavior of the score dissection framework when applied to the hits’ 
alignments returned by domain models from HMMER searches was examined. For this 
purpose, 285 (out of 537) SMART and 2381 (out of 4771) Pfam domain models were taken 
from the preceding section after filtering domain models with low-quality segments of less 
than 10 alignment positions. Furthermore, to avoid potential bias in outcome due to 
differences in search sensitivity by either HMMER2 or HMMER3, both were used for the 
generation of the initial result sets where only common hits by both HMMER2 and 
HMMER3 were dissected. 

First, each selected SMART/Pfam domain was searched (via HMMER2/3 hmmsearch) 
against (i) the seed database consisting of seed sequences and (ii) UniProt/SwissProt database 
to generate altogether 4 sets of scores: HMMER2/seed, HMMER3/seed, 
HMMER2/SwissProt and HMMER3/SwissProt score sets. Next, for each score set, the hit 
alignments were dissected into high-quality (enriched with structural residues) and low-
quality segments. The corresponding sub-scores as well as the total score were statistically 
evaluated in terms of E-values independently for both high- and low-quality parts (see Table 
2 and the Methods section “Classification of hits in the comparative HMMER2 and 
HMMER3 analysis”). 



Table 2 Label of individual HMMER hits (TP, FN, FP, TN) based on E-values of total 
score, high-quality score and low-quality score 

Type E-value 
Total score High-quality score Low-quality score 

TN > 0.1 > 0.1 > 0.1 

> 0.1 > 0.1 ≤ 0.1 
TP ≤ 0.1 ≤ 0.1 > 0.1 

≤ 0.1 ≤ 0.1 ≤ 0.1 
FP ≤ 0.1 > 0.1 ≤ 0.1 
FN > 0.1 ≤ 0.1 > 0.1 
? > 0.1 ≤ 0.1 ≤ 0.1 

≤ 0.1 > 0.1 > 0.1 
Type (?) occurs when the score threshold causes the total score to become insignificant 
(despite significant high and low-quality score) or vice versa. 

In the statistical evaluation, the E-values were calculated using a standard database size of 
540261 (UniProt as of April 2013; using equation (2) in the Methods section). This implies 
that the HMMER3 E-values were adjusted since their original E-values were computed based 
on the size of the returned set. On the other hand, the peculiarity in HMMER2 E-value 
calculation previously reported in [20] (jumping between two statistics) was suppressed and 
the usage of the extreme value distribution (EVD) was enforced in all computations. Finally, 
the significance call for E-value is set at 0.1 as recommended by the HMMER authors [38]. 
Subsequently, all hits were tagged as true-positive (TP), false-negative (FN), true-negative 
(TN) and false-positive (FP) (see Table 2). 

Finally, the hits from HMMER2/seed and HMMER3/seed score sets were paired as long as 
the hits shared a common sequence segment to create a unified set between HMMER2 and 
HMMER3 results. The same was repeated for HMMER2/SwissProt and 
HMMER3/SwissProt score sets. Among the paired hits, they can be sub-classified into the 
concordance and discordance class. Accordingly, the concordance class contains hit results 
agreed upon by both HMMER2 and HMMER3 where the positive concordance class 
suggests that the hits are true while the negative concordance class suggests that the hits are 
false. On the other hand, the discordance class contains the results where HMMER2 and 
HMMER3 disagreed upon. Fundamentally, this class arises due to the differences in model 
parameterization and search/alignment algorithm attributed by the two flavors of HMMER. It 
is beyond the scope of this work to resolve which version of HMMER is better suited for the 
purpose. In addition, unmatched or orphaned hits are also excluded since this touches on the 
issue of search sensitivity and it is again not the focus of this work on score dissection (see 
Table 3 and the Methods section “Classification of hits in the comparative HMMER2 and 
HMMER3 analysis”). 



Table 3 Classification of paired/orphaned hits for comparative HMMER2 and 
HMMER3 analysis 
Group Classification Type 
Paired hits TRUETRUEHMMERHMMER 32  

(Positive concordance) 
TPTP 

TPFN 

FNTP 

FNFN 
FALSEFALSEHMMERHMMER 32  

(Negative concordance) 
TNTN 

FPTN 

TNFP 

FPFP 
FALSETRUEHMMERHMMER 32  

(Discordance type 1) 
TPFP 

FNFP 

TPTN 

FNTN 
TRUEFALSEHMMERHMMER 32  

(Discordance type 2) 
FPTP 

FPFN 

TNTP 

TNFN 
Orphaned hits ONLYHMMER2  TP 

FN 
FP 
TN 

ONLYHMMER3  TP 
FN 
FP 
TN 

Figure 9 shows the base performance of the dissection framework when applied on the seed 
score set. Basically, one would expect a high positive concordance rate (an ideal value of 
100%) and a low negative concordance rate (an ideal value of 0%) per domain model given 
that all its seed sequences are considered to be true hits. This also necessarily follows that the 
high-quality scores/E-values are more dominant than the low-quality counterparts for these 
seed sequences. 

Figure 9 Histograms of the positive and negative concordance rates when applied to 
seed sequences of 285 SMART and 2381 Pfam domain models. High-quality E-values 
versus low-quality E-values plots for concordance hits from HMMER2 and HMMER3-
dissected results. Figure A and B depict the histograms of the positive concordance rates for 
the 285 SMART and 2381 Pfam domain models respectively. On average, the positive 
concordance rates are (99.17 ± 3.46)% for SMART and (99.69 ± 2.13)% for Pfam, suggesting 
that almost all the seed sequences were correctly labeled as true hits (see vertical dotted 
lines). 225 (out of 285) SMART and 2142 (out of 2381) Pfam domains have a 100% positive 
concordance rate as depicted by the horizontal dotted lines. Likewise, Figure C and D show 
the histograms of the negative concordance rates for the same sets of domains. On average, 



the SMART and Pfam domains have a negative concordance rate of (0.0033 ± 0.0042)% and 
(0.0017 ± 0.0341)% respectively (see vertical dotted lines), implying that almost none of the 
seed sequences are mistaken as false hits. 283 (out of 285) SMART and 2374 (out of 2381) 
Pfam domains have a zero negative concordance rate as marked by the horizontal dotted 
lines. Figure E and F plot the high-quality E-values versus the low-quality E-values of the 
positive (in red) and negative (in blue) concordance hits of the HMMER2/SMART and 
HMMER2/Pfam dissected results respectively. Similarly, Figure G and H show similar plots 
for HMMER3/SMART and HMMER3/Pfam dissected results respectively. 

Figure 9A and B depict the histograms of the positive concordance rates (see equation (19) in 
Methods) for the 285 SMART and 2381 Pfam domain models respectively. Note that the 
total paired hits included the discordance hits. Generally speaking, 225 (out of 285) SMART 
and 2142 (out of 2381) Pfam domains under investigation exhibit a perfect positive 
concordance rate as depicted by the horizontal dotted lines. On average, the positive 
concordance rate was (99.17 ± 3.46)% for SMART and (99.69 ± 2.13)% for Pfam as depicted 
by the vertical dotted lines. This suggests that almost all the seed sequences were correctly 
labeled as true hits. 

However, there were about a dozen of domains that have deviated from the ideal rate of 
100% quite significantly. At below 90% positive concordance rate, there were altogether 9 
Pfam and 4 SMART domains. A detailed breakdown of the seed sequence classification of 
these 13 domains was given in Table 4. Among these domains, the discordance rates of 
several domains like SM00185 (ARM), PF10590.4 (PNPOx_C_seed), SM00733 (Mterf), 
SM00304 (HAMP), PF00433.19 (Pkinase_C) and PF13894.1 (zf-C2H2_4) stood out at more 
than 20% (20.99%, 21.41%, 25.16%, 38.76%, 45.18% and 71.43% respectively). 
Incidentally, their domain lengths range between 49 and 159 alignment positions (on average 
about 100 alignment positions). This implies that for these short domains, an E-value 
threshold of 0.1 is not optimal. 



Table 4 Detail breakdown of the seed sequence classification of 9 Pfam and 4 SMART domains with positive concordance rate of < 90% 
Pfam/SMART domains Domain length Positive 

concordance/Total 
Discordance 

Total Common hits Orphaned hits 
HMMER2/3  

Positive 
concordance (%) 

Total discordance 
(%)  

PF00433.19 Pkinase_C 159 108/89 197 55/0 54.82 45.18 
PF01426.13 BAH 349 53/10 63 4/0 84.13 15.87 
PF02098.11 His_binding 296 19/4 23 0/0 82.61 17.39 
PF02965.12 Met_synt_B12 309 14/2 16 0/0 87.50 12.50 
PF05594.9 Fil_haemagg 160 122/16 138 17/0 88.41 11.59 
PF10590.4 PNPOx_C_seed 112 268/73 341 0/0 78.59 21.41 
PF11736.3 DUF3299 235 79/13 92 0/0 85.87 14.13 
PF13894.1 zf-C2H2_4 105 2/5 7 577/0 28.57 71.43 
PF15612.1 WHIM1 66 29/4 33 3/0 87.88 12.12 
SM00185 ARM 66 128/34 162 7/0 79.01 20.99 
SM00304 HAMP 122 79/50 129 91/0 61.24 38.76 
SM00320 WD40 119 580/137 717 1055/0 80.89 19.11 
SM00733 Mterf 49 115/39 155 90/0 74.19 25.16 



There was also another interesting observation with regard to the differences in search 
sensitivity between the HMMER variants. For the cases of SM00320 (WD40) and PF13894.1 
(zf-C2H2_4), it was found that the number of orphaned hits found by HMMER2 only (see 
column 5 in Table 4) was more than the number of common hits that can be paired between 
HMMER2 and HMMER3 (see column 4; Table 4). As a side effect, they suffered a low 
positive-concordance rate. An investigation on their domain model revealed that more than 
half the alignment positions are made up by gaps rather than sequences (see supplementary 
website [37] for alignments). Thus, the list of domain models that dramatically differ from 
the optimal recovery rate of sequences in this test can also be seen as a suggestion for 
domains that might benefit from seed alignment re-valuation and polishing. This might 
include either alignment re-arrangement and/or exclusion of some of the seed sequences. 

Meanwhile, Figure 9C and D show the histograms for the negative concordance rates (see 
equation (20) in Methods) of the same sets of domains. In this case, 283 (out of 285) SMART 
and 2374 (out of 2381) Pfam domains have a zero negative concordance rate (see horizontal 
dotted lines). On average, the SMART and Pfam domains have a negative concordance rate 
of (0.0033 ± 0.0042)% and (0.0017 ± 0.0341)% respectively (see vertical dotted lines), 
implying that almost none of the seed sequences are mistaken as false hits. Taken together, 
the dissection framework has asserted the validity of the seed sequences as true hits of their 
respective domains. 

The concordance hits were also plotted in terms of their high-quality (fold-critical surrogate) 
E-values and low-quality (remnant surrogate) E-values in Figure 9E to H. The positive 
concordance hits are in red while the negative ones are in blue. Figure 9E and F shows the 
concordance hits generated by HMMER2 for SMART and Pfam domains. From both plots, 
the trend where the high-quality E-values are more dominant than the low-quality E-values is 
apparent (in red). This implies that these positive concordance seed sequences are indeed true 
hits of the respective SMART and Pfam domains. Meanwhile, a small number of negative 
concordance hits reside in the insignificance quadrant defined by high-quality E-value > 0.1 
and low-quality E-value > 0.1. These are the hits that had contributed to the non-zero 
discordance rates. Meanwhile, Figure 9G and H depict the SMART/Pfam results for 
HMMER3. Essentially, the same conclusion can be made. 

Having established the baseline performance of the dissection framework, we then attempt to 
quantify the level of false-negative (FN) and false-positive (FP) hits from the results of the 
unified SwissProt score set generated earlier (see Figure 7). To emphasize, a FN hit is a 
positive hit that has been mistaken as a negative hit due to its inability to score well against 
the low-quality segments while a FP hit is a negative hit that is thought to be a true hit due to 
a significant score on the low-quality segments. The low-quality segment score is especially 
redundant for the current domain models under investigation since these segments harbored 
mostly residues which contribute lesser to the overall fold of a protein than the structural 
residues. As a measure of FN and FP rates, the sum of TPFN, FNTP and FNFN hits and the 
sum of FPTN, TNFP and FPFP over the total paired hits was taken respectively (see 
equations (22 and 23) in Methods and Table 3). 

Figure 10A and B show the histograms of the non-zero FN rates for 197 (out of 285) SMART 
and 1195 (out of 2381) Pfam domain models respectively. The remaining 88 SMART and 
1186 Pfam domains with zero FN rates were excluded from the plots. In particular, these 197 
SMART and 1195 Pfam domains potentially generated FN hits in the HMM searches. In fact, 
some of the FN hits from these domain models were validated as true hits like the magnesium 



chelatase (CHLI_PORPU) and the glutamyl-tRNA reductase (HEM1_METKA) from our 
earlier illustration. Henceforth, it is suggestive that there are many yet to be validated 
homologous relationship, albeit distant, between these FN hits and their associated domain 
model that requires case-to-case clarification. On average, the FN rates were (7.63 ± 14.98)% 
and (4.86 ± 10.27)% for SMART and Pfam respectively (see vertical dashed lines). 

Figure 10 Histograms of the false-negative and false-positive rates of 197 (out of 285) 
SMART and 1195 (out of 2381) Pfam domain models when applied to 
SwissProt/UniProt database. Figure A and B show the histograms of 197 (out of 285) 
SMART and 1195 (out of 2381) Pfam domain models with non-zero FN rates respectively. 
The remaining 88 SMART and 1186 Pfam domains with zero FN rate were excluded from 
the plots. In particular, the non-zero FN rate domains potentially generated FN hits in the 
HMM searches. On average, the FN rates were (7.63 ± 14.98)% and (4.86 ± 10.27)% for 
SMART and Pfam as marked by the vertical dashed lines. Similarly, Figure C and D depict 
the histograms of the non-zero FP rates for 42 (out of 285) SMART and 370 (out of 2381) 
Pfam domains. The remaining 243 SMART and 2011 Pfam domains with zero FP rates were 
excluded from the plots. In contrast to the FN rates, the FP rates were relatively lower. The 
average FP rate for SMART is (0.377 ± 1.703)% and (0.953 ± 4.707)% for Pfam, as depicted 
by the vertical dashed lines. Note that all the averages were taken over 285 SMART and 2381 
Pfam domains respectively. 

Meanwhile, Figure 10C and D depict the histograms of the non-zero FP rates for 42 (out of 
285) SMART and 370 (out of 2381) Pfam domains. The remaining 243 SMART and 2011 
Pfam domains with zero FP rates were excluded from the plots. In contrast to the FN rates, 
the FP rates were relatively lower where the average FP rate for SMART is (0.377 ± 1.703)% 
and (0.953 ± 4.707)% for Pfam (see vertical dashed lines). Unsurprisingly, since most 
domain models were constructed from the well-curated SwissProt sequences, this resulted in 
only 42 SMART and 370 Pfam domains with non-zero FP rates. Indeed, the current domain 
models have generally very low false hits inclusion as expected. Note that all the averages 
above were taken over 285 SMART and 2381 Pfam domains respectively. 

In hindsight, SMART and Pfam domain models have never been constructed to find all true 
hits (to ensure low FN rates) and this is not a matter to worry. It is more important in this 
context that the FP rate is extreme low (<1%) for most domain models. The few exceptional 
models with high FP rates deserve re-visiting and some modifications in their seed alignment. 
However, it is important to bear in mind that the error rates estimated here are suggestive of 
baseline rates since the searches have been performed over UniProt/SwissProt, which is a 
relatively small database. The expected error rates might be higher when a larger database 
such as NCBI’s non-redundant protein database is considered. 

Discussion 

Sequence homology concept in its current implementation and the necessity of 
dissecting sequence alignments 

The sequence homology concept is backed by an inductive proof. It originates from the 
observation that homologous proteins share a high degree of sequence similarity, protein fold 
and biological function. The key to sharing a similar fold, implying a similar function, 
between the homologs is dependent on the similarity between the more conserved parts, most 



importantly the structural elements. As such, the evidence for homology should stem from 
the similarity between the aligned structural elements and key functional motifs with less 
emphasis from the other sequence segments. As we delve deeper into the search space, higher 
sequence divergence is to be expected and it will dilute overall sequence similarity and 
consequently, the homology signal. Therefore, the emphasis on similarity between the 
structural elements in alignments is the key to finding the homologs (both the close and the 
distant ones) while keeping the false ones at bay. 

Despite its simplicity and elegance, the sequence homology concept is not readily 
computable since homology has no direct measure. It can at best be formulated into a 
hypothesis to be tested from the sequence similarity which is a necessary but insufficient 
condition for concluding homology. Although similarity by chance can be removed by some 
statistical criterion like E-value, often, the main issue is dealing with the statistically 
significant similarities of any aligned pieces (as the program outputs) that are concluded as 
homologous instead of convergence as alternative. Since current sequence search packages 
can only operate strictly in similarity space, this has a tendency to promote, to some extent, 
the fallacy that ‘high sequence similarity implies homology’. 

Even in current times, this fallacy is still being extensively discussed by several authors, e.g. 
by Varshavsky and coworkers who coined the term “sequelog” in an attempt to differentiate 
homology from high sequence similarity [68] and by Theobald who highlighted the sins of 
sequence similarity derived p-values in concluding common ancestry [69]. However, there 
was no proposed quantitative solution on the fallacy issue. In mitigation, certain convergence 
cases in the form of compositional bias segments can be suppressed by pre-filtering with SEG 
prior to BLAST searches or by turning on ‘null2’ and ‘nobias’ options in HMMER searches, 
but this also comes with the price of sacrificing some sensitivity (i.e., the ability to detect true 
hits) [10]. On top of that, not all loop segments are compositionally-biased per se. For 
example, the extracellular loops of GPCR are important in functionally distinguishing the 
diverse GPCR families [60]. 

Thus, the sequence homology concept has yet to be fully implemented in current sequence 
homology search packages because mindful distinction between contributions from 
evolutionary important pieces versus spurious similarity pieces was never explicitly dealt 
with; hence, this necessitates for the dissection of an alignment for explicit segments to be 
reevaluated. As we emphasized in the Introduction, a (globular) domain is a special protein 
sequence unit with structural (autonomous hydrophobic core), thermodynamic (independent 
folding and melting) and evolutionary (domain shuffling) implications [30]. Protein domain 
libraries widely used for homology-based annotation contain a sizeable number of entries that 
do not represent domains in this sense. Thus, score dissection becomes an option to deal with 
this problem. As a necessary condition to be considered as a true hit, the fold-relevant 
segments should either be more statistically significant than the other segments or minimally 
be statistically significant on its own. 

The dissection framework and its implications in evaluating and detecting 
homology in annotation pipelines 

In our proposed dissection framework, an alignment is dissected into its high-quality 
segments (representing fold-relevant residues) and low-quality segments (representing other 
residues) with the subsequent purpose of statistically evaluating the two segment-based score 
sums. Together with the original scores/E-values, these segment-based sums provide a new 



level of granularity to the dissection framework for determining if a hit is true (true-positive 
and false-negative) or false (true-negative and false-positive). In a nutshell, the dissection 
framework has created a new paradigm in which homology can be evaluated more concisely 
and, at the same time, more faithful to the sequence homology concept. And for the purist of 
the homology concept, sequence searches now have a better chance to escape the fallacy of 
‘high sequence similarity implies homology’. 

For the true-positives of the domain model, the dissection framework can reassert their 
validity as legit hits with respect to the domain. Indeed, when the framework was applied to 
the seed sequences of 285 SMART and 2381 Pfam domain models (with PDB/DSSP 
information; selected based on enriched structural residues in their high-quality segments), 
they exhibited the average positive and negative concordance rates of 99% and almost 0% 
respectively. These results imply that the seed sequences were recognized correctly by the 
framework as true hits of the domains. 

On the other hand, cases of false hits (false-positives and true-negatives) will be occluded by 
the framework due to their significant low-quality scores/E-values. This scenario was played 
out by the case study of the 10 false hits (IF2P_HUMAN, IF2P_MOUSE, IF2P_PONAB, 
NUCL1_ORYSJ, MLL2_MOUSE, CORTO_DROME, DHKL_DICDI, AMOT_MOUSE, 
NUCL_HUMAN, PK4_DICDI) where their original HMMER2 E-values were insignificant 
yet significant for HMMER3. Despite a contradictory conclusion from the HMMER variants, 
their remnant segment-based E-values were indisputably significant for both HMMER 
versions. Thus, HMMER3 hits were tagged as false-positives while the same hits by 
HMMER2 were labeled as true-negatives. In both cases, they were considered as false hits by 
the framework. Interestingly, pre-filtering of compositionally-bias sequence segment may 
become less critical under the dissection framework since these hits will anyhow exit as false 
hits due to their significant remnant segments’ E-values. This also meant that the ‘null2 
model correction’ and the ‘nobias’ option in HMMER2/3 can be turned off to maximize for 
search sensitivity to allow more hits. 

Given the results in this work, a quantitative criterion for assessing segmented HMM scores 
in annotation pipelines might include the expectation (i) for the fold-relevant contribution 
resulting in a low E-value (e.g., <0.01 or <0.001) independently of the E-value for the total 
alignment and/or (ii) for the ratio between the E-value of the fold-critical part versus that of 
the remnant contribution clearly below 1. 

To emphasize, score dissection with regard to fold-critical and other segments is a generic 
concept that can be applied to any sequence or multiple aligment comparison technique. This 
idea can be easily extended, for example, to the BLAST-based approach with minor 
adaptations: first, the extraction of the EVD parameters from the blast statistics and second, 
the parameters used for score reconstruction need to be extracted from BLOSUM/PAM for 
BlastP algorithm and PSSM for PSI-Blast algorithm. 

Most importantly, the dissection itself should aim squarely at approximating the location of 
globular domains by applying either tertiary structure finding algorithms or any tools for 
detecting non-globular segments. We can only warn against applying non-physical, non-
evolutionary dissection principles such as cutting sequences arithmetically first in two parts, 
then in four and then, maybe, in eight as many might be tempted to. This approach is likely to 
distribute fold-critical residues to many of the segments, hence diluting evolutionary 
information instead of enriching it in one class. 



The dissection approach helps finding yet unexplored homology relationships 

Perhaps, the most interesting additional capability of the dissection framework, aside from 
being able to isolate false hits, is its proposal of unexplored homologous relationships 
between the hits and domain models. This means the recovery of hits presently being falsely 
labeled as negatives. When the dissection framework was applied to the search results against 
UniProt/SwissProt for these 285 SMART and 2381 Pfam domains, it revealed an overall 
average false-positive rate of less than 1% but the average false-negative rates of 7.63% for 
SMART and 4.86% for Pfam. Although the low false-positive rate implies that the current 
domain models have generally very low false hits inclusion, the moderate false-negative rates 
suggest that there are many potential true hits that are obscured by bad E-values. This 
situation was exemplified by our case study where the previously insignificant true hits 
(CHLI_PORPU, HEM1_METKA, TIP12_MAIZE) were obscured as a result of heavy score 
penalties on the low-quality alignment segments. However, they were subsequently rescued 
by their significant fold related segments’ E-values. 

In particular, the discovery of the homologous relationship between the plant aquaporin 
(TIP12_MAIZE) and formate/nitrate transporter (PF01226.12), which indicates that the latter 
is actually a channel, was essentially exclusive to the structure-alignment based approaches. 
Even though certain sequence search methods might detect some level of sequence similarity 
between aquaporin and formate transporter but their E-values remain statistically 
insignificant (e.g. the HHPred server [36] returns E-value of 20 between aquaporin and 
formate transporter). However, with the proposed dissection framework, this evolutionary 
relationship can be rediscovered in sequence similarity space through the justification of a 
statistically significant fold-critical E-value. Taken together, we have shown that it is possible 
to explore deeper into sequence space to recover novel true hits without admitting the false 
ones. Surprisingly, this is achievable without tweaking or modifying the existing search 
algorithms but by simply performing postmortem dissection of alignments and re-evaluation 
of the segment-based scores. 

Estimation of evolutionary segments in domain models 

It is neither practical nor reasonable to create domain models without their non-fold-related 
segments so identifying these pieces is a matter of necessity. A critical component in the 
proposed dissection framework is the pre-definition of the evolutionary-related pieces in the 
domain models. The PDB/DSSP data gave the best delineation of fold-critical segments from 
the remaining ones. However, it suffices only as a proof of concept for the dissection 
framework and is not readily applicable to domain models that do not have a significant PDB 
structure representation. Hence, a more generalized measure is required as a reasonable 
surrogate for estimating structural segments of domain models. As such, the quality score 
from CLUSTALX [62] as representative of similar alignment quality scales, which measures 
sequence conservation for each alignment column, was investigated. 

As it turns out, the Fishers’ exact test showed that 537 SMART and 4771 Pfam domains were 
enriched with structural residues in their respective high-quality segments. This was out of 
635 SMART and 5876 Pfam domains with a representative PDB structure. Correspondingly, 
the high-quality and low-quality segments were able to reasonably estimate the fold-critical 
and remaining segments respectively. This was further reinforced when the examples from 
the case study were reexamined by the dissection framework using the quality score instead 
of PDB/DSSP. Overall, the conclusions were similar with the exception of 2 hits 



(TIP12_MAIZE, HEM1_METKA for HMMER2 results). For the cases of these 2 hits, this 
signifies that quality score is an overestimate of fold-critical segments and as a result, it tends 
to underestimate the false-negative hits by adding part of the negative remnant sum to the 
fold-critical sum. Indeed, a scrutiny on the high-quality segments of the associated domain 
models for these 2 hits revealed that some of these segments were covered by loop residues 
when compared against the PDB/DSSP annotations. 

In hindsight though, one should err on the side of conservativeness; i,e., one needs to be more 
stringent with claiming a true hit. Therefore, the quality-score is still a reasonable estimate for 
partitioning the fold-relevant and remnant segments. Nevertheless, one can easily add more 
estimates like low-complexity/disorder predictors (SEG [67], IUPred [70], GlobPlot [71], 
tools for predicting regions with certain posttranslational modifications and translocation 
signals [72,73], etc.) on top of the existing quality score measure so that a more 
comprehensive definition of fold- and domain function-critical versus other segments can be 
derived. 

However, this task of selecting/combining predictors to mimic the PDB/DSSP information to 
perform domain segmentation is not straightforward. When compared to the quality-score 
results, the application of SEG-based dissection to the 13 case study examples worked 
equally well for the HMMER2 hits but less so for many of the fragmented HMMER3 hits. 
This revealed the sub-optimality of SEG in elucidating the fold-critical domain segments 
when compared to the quality-score. Consequently, the effect is more pronounced in the short 
fragmented HMMER3 hits than the longer HMMER2 hits. Despite so, the SEG-derived 
segments can still help to identify well-conserved low-complexity segments (to be marked as 
remnant segments) that will otherwise be missed by the quality-score. Hence some 
combination of the two predictors makes sense. 

In any case, the creation of a catalogue of segmentations for existing protein domain libraries 
such as Pfam or SMART will be necessary in the absence of complete PDB/DSSP 
information for a foreseeable future and it will be considered in our future work. 

Conclusions 

As sequence homology can only be concluded inductively and overall sequence similarity is 
a measurable, necessary but insufficient criterion to justify homology, additional 
considerations are required to decide about homology relationships between biomolecular 
sequences. To distinguish the true cases from the false background might be possible in a 
manual study for individual cases; yet, a computerized pipeline for large-scale annotation 
requires quantitative conditions. 

The complex hydrophobic/hydrophilic sequence pattern necessary for fold formation and 
conserved during evolution can be used for this purpose by dissecting the similarity score into 
fold-critical contributions and other parts originating from non-globular segments, long loops, 
etc. This work serves as a proof of concept for this idea. The dissection framework and the 
software tools provided with this article are useful for systematically suppressing otherwise 
generated false-positive hits in sequence similarity searches. 



The dissection approach allows also extracting more value out of existing protein domain 
model databases without the need to re-edit them simply by defining segmental contribution 
and, thus enhancing or deemphasizing certain parts of the seed alignments. 

Surprisingly, this approach was also successful in recovering hitherto hidden homology 
relationships by stripping away the noise created by score contributions from non-fold-
critical, non-globular protein regions. 

Methods 

Reconstruction of HMMER scores and E-values 

Generally speaking, the log-odd score of an alignment v between the HMM hidden sequence 
X and an observed hit sequence Y of length L can be re-computed by summing up a set of 
emission, transition and a fixed score f. The general equation for the total score of an 
alignment, where ,HMM HMMe t  and ,null nulle t  are the emission and transition parameters of the 

hidden and null model respectively, is given as : 
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The respective transition and emission (match or insert state) score for each position can be 
retrieved from the respective HMM model file (created by hmmbuild). In the case of 
HMMER3 model files, we added an additional step to convert them to HMMER2 format (via 
hmmconvert −2) prior to the reconstruction step. Note that the fixed score is independent of 
the alignment and it is essentially constant for the same domain model. The fixed score is 
made up of the additional special transition scores (N- > B, N- > N, E- > C, E- > J, C- > T, C- 
> C, J- > B, J- > J) and annotated in ‘XT’ line of the model file. 

For the computation of E-value, the maximum Gumbel extreme value distribution is used and 
is given as : 

( )EVDE N P S v= ⋅ ≥  



( )( )1 e vN e λ µ− − −= ⋅ −  (2) 

where N is the size of the database that was searched against, ( ),µ λ  are the summary 

statistics of the HMM domain model file (‘EVD’ line for HMMER2, ‘STATS LOCAL 
FORWARD’ line for HMMER3). 

For the creation of the domain models, the following command and options were used : 

(HMMER2) hmmbuild -F --amino --fast --gapmax 1 

hmmcalibrate --seed 0 --num 5000 

(HMMER3) hmmbuild --amino --fast --symfrac 0.0 

hmmconvert −2 

For searching domain models against sequence databases, the following command and 
options were used : 

(HMMER2) hmmsearch --null2 -E 10 

(HMMER3) hmmsearch --nonull2 --nobias -E 10 

As an initial consideration, the’null2 correction model’ and the’nobias’ options were turned 
off since (i) it was unclear how these penalties were calculated and on which part of the 
alignment, particularly for HMMER3, and (ii) it improves search sensitivity according to the 
manuals [38,39]. 

Regression and fit 

Here, the linear relationship W v=  is tested to affirm the reproducibility of the HMMER 
scores. For each domain, a linear regression (without intercept) is performed between a set of 
original scores v  and reconstructed scores W for each domain (with P hits) and the associated 
slope β̂  and the coefficient of determination 2r  is computed. 

It is important to note that the regression will be performed on a set of seed sequences’ scores 
per domain. Therefore, it is inevitable that these scores would cluster closely. As such, an 
extra point at the origin (i.e. 0,0) is added to each set of scores to alleviate the bias towards 
the high scores. For a set of scores that is well spread, the additional point has little impact. 

The slope ̂β  is given as : 

1

2

1

ˆ

P

i i
i

P

i
i

w v

v
β =

=

=
∑

∑
 (3) 



The coefficient of determination 2r  is given as : 
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Derivation of error estimates model 

With respect to a given domain model, an alignment between the HMM emitted sequence and 
the hit sequence can be recomputed by summing the appropriate emission, transition and 
fixed scores taken from the HMMER2/3 model parameters. This reconstructed score W can 
be subjected to (i) rounding errors, (ii) parameter conversion estimation and (iii) 
unavailability of local model parameters ((ii) and (iii) applies to HMMER3 hmmconvert, see 
also Figure 1). Here, an error model ε  can be derive to quantify the approximation error 

where ( )2~ ,N ε εε µ σ  for each given domain model. Collectively, the reconstructed score W 

is related to the original score v  by : 

W v ε= +  (5) 

It follows that the mean and variance of the component-wise error model ε  are given as : 

( )
1

1 P
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= −∑  (6) 
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for P pairs of original and reconstructed scores. 

As a measure against the representative domain score, the error estimate can be written as a 
relative measure given as : 

r
v

εµε
µ

=  (8) 

where the representative domain score is estimated by 
1

1 P

v i
i

v
P

µ
=

= ∑ . 

Fisher’s exact (one-tailed) test for structural/loop residues in high-quality 
versus low-quality segments in domain alignment 

First consider an alignment between a HMMER sequence and a hit sequence with its 
associated DSSP annotations. Then, let the DSSP structure residue be denoted by a set 



{ , , , , , , }SR H B E G I T S=  where H = alpha helix, B = residue in isolated beta-bridge, E = 

extended strand that participates in beta ladder, G = 3-helix (3/10 helix), I = 5 helix (pi helix), 
T = hydrogen bonded turn and S = bend. On the other hand, let the unstructured set be 
denoted by {'', }UR = −  where ‘’ and – represent loop residue and alignment gap respectively. 

Furthermore, let the total high-quality and low-quality residue counts be 
1R  and 

2R  

respectively while the total structure and non-structural residue counts be 
1C  and 

2C  

respectively (See Table 5). The total count of all residues is N . As such, the null hypothesis 
is stated as: 

Table 5 2-by-2 contingency table setup for Fishers’ exact test 
 Outcome  

#{H,B,E,G,I,T,S} #{",−}  
High-quality residues f11 f12 R1 
Low-quality residues f21 f22 R2 

 C1 C2 N 

0H : The proportion of high-quality residues containing structure residues 
sR  is no greater than the 

low-quality residues containing structure residues 
sR . 

Consequently, the p-value to be tested at a significance level of 0.05α =  is evaluated via the 
hypergeometric cumulative density function in the following form: 

( ) ( )11 111P X f P X f> = − ≤  (9) 

where ( ) 1 1
11

11 1 11 1

R N R N
P X f

f C f C

−    
= =     −    

 

Domain quality score 

We use the alignment quality measure as adapted from CLUSTALX [62]. The domain 
quality score can be calculated for each column in the sequence alignment to measure the 
consensus level of amino acid per alignment position. Suppose we have an alignment of 
amino acid residues a  of M sequences with N positions. This can be expressed as : 
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The consensus vector for column j over R amino acid residues {1,2,3,..., }a R=  is written as : 
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where 
rjF  is the count of residue r  in column j, 

rtc  is the score (taken from BLOSUM62 

matrices) of between residue r and residue t. At the same time, the score vector of residue 
ija  

for sequence i at position j over R residues is given as : 

1 2[ ]
ij ij ijij a a RaS c c c= �  

For each sequence i and position j, the distance measure between the consensus column j and 
the residue 

ija  over R residues is then given as : 

( )
1

ij

R

ij rj ra
r

D X c
=

= −∑  (11) 

Finally, the quality score, Q for column j over M sequences is given as : 

1

M
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D
Q

M
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∑

 (12) 

Since quality score Q as a distance measure is expected to be near zero for high consensus 
while large for low consensus, it would be more intuitive to invert and limit the range of Q as 
follows : 

{ }
{ } { }

1 2

1 2 1 2

min , , ,ˆ ˆ1 , 0 1
max , , , min , , ,

j N
j

N N

Q Q Q Q
Q Q

Q Q Q Q Q Q

−
= − ≤ ≤

−
�

� �
 (13) 

Finally, inverted quality score ̂
jQ  for column j is normalized by multiplying the ratio of 

amino acids (less gaps) over the total sequences given as : 

ˆ
j j

k
Q Q

M
= ×�  (14) 

where k is the count of valid amino acid residues. 

Minimum number of sequences in an alignment 

Given an alignment, for each position, let M be number of sequences (excluding gaps in the 
particular column) and let k be the sum of Bernoulli random variable I (an indicator variable). 
The indicator variable emits either a value of one for a positive prediction or zero for a 
negative prediction. Collectively, this can be written as the Binomial random variable. 
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Under equal chance condition, the null and alternate hypotheses are stated as 
: 0.5, : 0.5o AH p H p≤ >  to be tested at a significance level of 0.05α = . Under this setup, 

the minimum number of sequences per alignment position is determined to be at least 5 since 
there is insufficient power to reject the null hypothesis for sequences below 4. This is because 
the smallest p-values for 4M =  is ( )4 0.0625P X ≥ = , 3M =  is ( )3 0.125P X ≥ = , 2M =  

is ( )2 0.25P X ≥ =  and 1M =  is ( )1 0.5P X ≥ = . All these p-values are larger than the 

significance level of 0.05α = . 

Determination of domain-wise quality score cutoff for low and high-quality 
segment 

Here, the appropriate cutoff to declare if a quality score is high or low is determined. With 
respect to a domain alignment, (i) the quality score per position and (ii) the number of valid 
amino acids per position ignoring gaps are first determined. Then, each quality score per 
position is classified into the following two classes : (i) if the alignment column has less than 
5 valid amino acids and (ii) if alignment column has at least 5 or more amino acids. 

The distributions of the two classes of quality score for SMART (version 6) is shown in 
Figure 11. Figure 11A (quality scores for 5 or more amino acids) depicts an interesting 
trimodal distribution, most likely, arising from 3 unique distributions of low-quality scores 
from weak alignments (left peak), average-quality scores from the typical alignments (center 
peak) and high-quality scores from homogenous alignments (right peak). In contrast to Figure 
11B, it is apparent that the lower quality scores mainly originate from alignment positions 
with less than 5 valid amino acids which are indicative of weak alignment segments. 
Conservatively speaking, the latter distribution forms the minimal negative set or the null 
hypothesis. To select the desired false-positive rate (FPR) and true-positive rates (TPR) for 
subsequent application, the quality score cutoff is permuted from 0 to 1 and tabulated in 
Table 6. Based on the table, the FPR of 5% corresponds to a quality score of at least 0.06 and 
renders a TPR of 90%. Note that FPR and TPR are given as: 

Figure 11 The distributions of the two classes of quality score for SMART version 6. 
Figure A depicts the quality scores alignment positions of 5 or more amino acids. It is a 
trimodal distribution, most likely, arising from low-quality scores from weak alignments (left 
peak), average-quality scores from the typical alignments (center peak) and high-quality 
scores from homogenous alignments (right peak). In contrast, Figure B shows mostly the low 
quality scores from weaker alignment positions of less than 5 valid amino acids. 



Table 6 Error rates (false-positive and true-positive rates) of quality scores at various 
quality score cutoffs for SMART (version 6) 
Cutoff  TP FN FP TN FPR TPR 
0.01 113960 3217 12650 19966 0.38785 0.973 
0.02 111450 5727 6610 26006 0.20266 0.951 
0.03 109530 7653 4157 28459 0.12745 0.935 
0.04 107900 9277 2813 29803 0.08625 0.921 
0.05 106480 10702 2070 30546 0.06347 0.909 
0.06 105260 11919 1608 31008 0.04930 0.898 
0.10 101690 15491 789 31827 0.02419 0.868 
0.20 95355 21823 294 32322 0.00901 0.814 
0.30 86126 31052 169 32447 0.00518 0.735 
0.40 69734 47444 72 32544 0.00221 0.595 
0.50 48713 68465 47 32569 0.00144 0.416 
0.60 31278 85900 15 32601 0.00046 0.267 
0.70 20413 96765 1 32615 0.00003 0.174 
0.80 12727 104450 0 32616 0.00000 0.109 
0.90 7473 109710 0 32616 0.00000 0.064 

TPTPR TP FN= +  (16) 

FPFPR FP TN= +  (17) 

Similarly, the same procedure was performed on Pfam (release 27). In a similar fashion, 
Figure 12A exhibits the same trimodal distribution while Figure 12B once again depicts that 
the low-quality scores originates from alignment positions with less than 5 amino acids or 
sparsely aligned segments. Table 7 gives the respective error rates (FPR, TPR) for various 
quality score cutoff. Based on the table, the FPR of 5% corresponds to a quality score of at 
least 0.14 and renders a TPR of 91%. 

Figure 12 The distributions of the two classes of quality score for Pfam release 27. 
Compared to the distributions from SMART (version 6), Figure A exhibits the same trimodal 
distribution while Figure B also depicts mainly the lower quality scores from weaker 
alignment positions with less than 5 amino acids. 



Table 7 Error rates (false-positive and true-positive rates) of quality scores at various 
quality score cutoffs for Pfam (release 27) 
Cutoff  TP FN FP TN FPR TPR 
0.01 2479900 21831 265240 267000 0.49835 0.991 
0.05 2384300 117450 79402 452830 0.14919 0.953 
0.10 2314800 186960 38684 493550 0.07268 0.925 
0.12 2292300 209440 31629 500610 0.05943 0.916 
0.13 2281400 220350 28938 503300 0.05437 0.912 
0.14 2270400 231360 26412 505820 0.04963 0.908 
0.15 2259500 242240 24371 507860 0.04579 0.903 
0.20 2201800 299960 16844 515390 0.03165 0.880 
0.30 2027300 474450 8670 523570 0.01629 0.810 
0.40 1718400 783320 4060 528180 0.00763 0.687 
0.50 1277700 1224000 1990 530250 0.00374 0.511 
0.60 857990 1643800 978 531260 0.00184 0.343 
0.70 571700 1930100 21 532210 0.00004 0.229 
0.80 361280 2140500 0 532240 0.00000 0.144 
0.90 217480 2284300 0 532240 0.00000 0.087 

Consequently, we are interested to find segments in a domain alignment of length N . Hence 
each segment can be written in set notation such that : 

1 2 1{ , , ,..., }, , 1k k k N k k kA a a a a a A a a+ + += ∈ − =  (18) 

where 
kaQ cutoff<�  (for low-quality segment) or 

kaQ cutoff≥�  (high-quality segment) 

Classification of hits in the comparative HMMER2 and HMMER3 analysis 

In the proposed comparative analysis, the hits are first generated from both HMMER2 and 
HMMER3 using the same domain alignment and searched against a common database (e.g. 
UniProt). In addition, only hits with E-value of 0.1 and below (as suggested by Sean Eddy in 
his original HMMER2 manual) are considered. 

Using this E-value criterion, one can then define each hit (whether HMMER2 or 3) as true 
positive (TP), false negative (FN), true negative (TN) and false positive (FP) based on the E-
values of its total score, high-quality segment score and low-quality segment score. 
Essentially, the TP and FN hits belong to a positive set while the FP and TN hits belongs to a 
negative set. 

The type of hits and associated conditions are listed in Table 2. For completeness sake, 
undefined type (?) has been included. The latter can occur when the fixed score causes the 
total score to become insignificant (despite significant high and low-quality score) or vice 
versa. In practice, these cases are almost non-existing. 

Consequently, the intersection of HMMER2 and HMMER3 hits will result in mainly two 
large groups: a paired group and an orphaned group. To elaborate, a paired hit is a hit 



covering the same sequence segment by both HMMER2 and HMMER3. An orphaned hit is 
(i) a hit scored on the same sequence but non-overlapping segments by HMMER2 and 
HMMER3; or (ii) a hit covered by either HMMER2 or HMMER3 only. 

In the paired group, one can further sub-divide the HMMER2/3 hits into four classes of (i) 
positive concordance hits where both HMMER2/3 mark the hits as positive, (ii) negative 
concordance hits where both HMMEr2/3 mark the hits as negative (iii) discordance type 1 
where HMMER2 marks the hits as positive but HMMER3 marks them as negative and (iv) 
discordance type 2 hits where HMMER2 marks the hits as negative but HMMER3 marks 
them as positive. The orphaned groups contain mutually exclusive hits that are found by 
either HMMER2 or HMMER3. See Table 3 for details. As such, the positive and negative 
concordance rates are given as : 

Pairedhits

TPTP TPFN FNTP FNFN
PositiveConcordance

count

+ + +=  (19) 

Pairedhits

TNTN FPTN TNFP FPFP
NegativeConcordance

count

+ + +=  (20) 

1 2

Pairedhits

discordanceType discordanceType
TotalDiscordance

count

+=  (21) 

Meanwhile, classes that contain the FN and FP hits are of high interest in this work. A FN hit 
is a positive hit that has been obscured due to a need to score an alignment for the low-quality 
segment while a FP hit is a negative hit that has been carried over to significance due to the 
high-scoring low-quality segments. To quantify the false-negative and false-positive rates in a 
given domain model, the formulas are given as : 

1

Pairedhits Pairedhits

FN TPFN FNTP FNFN
FNrate

count count

≥ + += =  (22) 

1
FPrate=

Pairedhits Pairedhits

FP TPFN FNTP FNFNF

count count

≥ + + ==  (23) 

SEG-derived domain model probabilities and high/low-complexity segments 

For each seed sequence in a domain alignment, the gaps were first removed and then 
predicted using the SEG low-complexity sequence predictor [67] with the following 
parameters : windows size = 25, lower cutoff = 2.9 and upper cutoff = 3.2. 

If a residue is flagged as low-complexity by SEG, then its corresponding position in the 
domain alignment is marked as 0 to indicate a negative prediction, otherwise, it takes a value 
of 1 to indicate a positive prediction. Essentially, each column in the alignment will be 
marked by 1’s or 0’s and can be viewed as a sum of Bernoulli random variables. Then to test 
for the significance of positive predictions in each alignment column, a p-value (see equation 
(15)) is calculated and tested at a significance level of 0.05. If the null hypothesis is rejected, 
the expected positive prediction count 

expk  is calculated as : 

( )expk P X k k= ≥ ×  (24) 



Otherwise, 
expk  is set to zero. Finally, the per-column probability indicating that the 

consensus column (with M sequences) is representative of a high-complexity residue (or fold-
critical surrogate) is given as: 

exp

exp exp

0.01 0if k
p k

if otherwiseM

=
= 


 (25) 

Consequently, the SEG-derived segments of the domain alignment can be obtained via 
equation (18) at a cutoff of 0.8 (i.e. 

expp cutoff≥  implies high-complexity while 

expp cutoff<  implies low-complexity). 
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Additional files 

Additional_file_1 as ZIP 
Additional file 1  Zip-archive of the software DissectHMMER. This archive contains all files 
to create a program executable for dissecting the score for a given HMMER2/3 protein 
domain model – query sequence alignment. 

Additional_file_2 as PDF 
Additional file 2: Table S1 This table contains the examples of validated false hits from 5 
Pfam domains (PF01298.13 Lipoprotein5, PF04814.8 HNF-1 N, PF05134.8 T2SL, 
PF09110.6 HAND, PF10390.4 ELL) and validated true hits from 3 Pfam domains 
(PF00004.24 AAA, PF00106.20 adh_short, PF01226.12 Form_Nir_trans). The segmentation 
of domain models is based on the alignment quality score. The data presented is 
complementary to Table 1 in the main text. 
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