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E-value guided extrapolation of protein domain annotation from libraries such as Pfam
with the HMMER suite is indispensable for hypothesizing about the function of exper-
imentally uncharacterized protein sequences. Since the recent release of HMMER3 does
not supersede all functions of HMMER2, the latter will remain relevant for ongoing
research as well as for the evaluation of annotations that reside in databases and in
the literature. In HMMER2, the E-value is computed from the score via a logistic
function or via a domain model-specific extreme value distribution (EVD); the lower
of the two is returned as E-value for the domain hit in the query sequence. We find
that, for thousands of domain models, this treatment results in switching from the
EVD to the statistical model with the logistic function when scores grow (for Pfam
release 23, 99% in the global mode and 75% in the fragment mode). If the score cor-
responding to the breakpoint results in an E-value above a user-defined threshold (e.g.
0.1), a critical score region with conflicting E-values from the logistic function (below
the threshold) and from EVD (above the threshold) does exist. Thus, this switch will
affect E-value guided annotation decisions in an automated mode. To emphasize, switch-
ing in the fragment mode is of no practical relevance since it occurs only at E-values
far below 0.1. Unfortunately, a critical score region does exist for 185 domain mod-
els in the hmmpfam and 1,748 domain models in the hmmsearch global-search mode.
For 145 out the respective 185 models, the critical score region is indeed populated by
actual sequences. In total, 24.4% of their hits have a logistic function-derived E-value
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< 0.1 when the EVD provides an E-value > 0.1. We provide examples of false anno-
tations and critically discuss the appropriateness of a logistic function as alternative to

the EVD.

Keywords: Sequence homology; E-value; extreme-value distribution; logistic function;
HMMER2; Pfam; sequence annotation.

1. Introduction

Sequencing of DNA has become the key life science research technology only because
computational methods provide an opportunity for the functional characteriza-
tion of otherwise not (especially not experimentally) studied genes and protein
molecules. The transfer of functional annotation from an experimentally character-
ized example to a whole family of proteins with similar sequences is justified by
the theory of sequence homology. Assuming a common ancestor and evolutionary
divergence due to mutational events, selection pressure for biological function will,
as a trend, result in similarity of amino acid sequence, three-dimensional structure
and molecular function for all members of the protein family.1–4

To enhance the sensitivity in sequence similarity searches, it is necessary to apply
sophisticated profile searches5,6 embedded in complex search heuristics.7,8 Since
protein segment family collection, their alignment and the subsequent profile gen-
eration represent a considerable effort, domain libraries have become an indispens-
able tool for annotation of uncharacterized sequences. Among the publicly available
collections, most notable are BLOCKS,9 CDD,10 EVEREST,11 libraries associated
with IMPALA,12 PANTHER,13 PRINTS,14 ProDom,15 PROSITE,16 SUPERFAM-
ILY17 and, as the most used primary ones, Pfam18,19 and SMART.20

Many domain libraries provide protein domain models in the form of hid-
den Markov models (HMMs).6,21 There is now more than a decade of empirical
experience of using the program HMMER26,21 for similarity searches with models
mainly from Pfam and SMART. This technology is tremendously helpful and has
become the cornerstone for annotating fully sequenced genomes. It should be noted
that the recent release of HMMER322,23 does not override HMMER2. HMMER3
only partially substitutes for HMMER2 since (i) it has only a fragmentary but
no global domain search variant.22,24 (ii) HMMER3 is not tested to the extent
of HMMER2 with regard to accuracy whereas the application of the latter has a
record of a decade of important biological discoveries. Importantly, the hit lists
of HMMER2 and HMMER3 are overlapping yet not identical. It is not clear at
present whether HMMER3 in its present form will really become the mainstream
in domain prediction. (iii) So far, only Pfam has changed to HMMER3 but not
other domain databases such as SMART. Further, domain assignments in many
sequence databases and in the literature have been generated with HMMER2 and
have not been and will not be renewed with HMMER3. Thus, HMMER2 has some
more time to live and understanding its way of E-value assignment remains rele-
vant. The issue of exaggerated E-values by HMMER2 has been noticed empirically
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by many in the community22,25; yet, the reasons remained unclear. Although late,
this article resolves part of the mystery.

Correctness of a hit of an HMM model within a protein query sequence can
either be taken with the gathering score criterion or be E-value guided.6,21 The
gathering score, the lowest score of a known good hit without false positives having
higher scores (at the time of model construction), is a conservative criterion; yet, it
misses many good hits. We have extensively discussed the deficiencies of the gath-
ering score approach elsewhere.26 E-value guided annotation transfer allows deeper
extrapolation into the sequence space when, at the same time, the false-positive
error remains statistically evaluated. In the manual provided with HMMER2, Sean
Eddy advises that “The best criterion of statistical significance is the E-value. The
E-value is calculated from the bit score. It tells you how many false positives you
would have expected to see at or above this bit score. Therefore a low E-value is
best; an E-value of 0.1, for instance, means that there’s only a 10% chance that you
would’ve seen a hit this good in a search of non-homologous sequences. Typically,
I trust the results of HMMER searches at about E = 0.1 and below, and I examine
the hits manually down to E = 10 or so.”

When using HMMER2-style HMMs, we anecdotally observed the trend for
extremely low E-values for known good hits; yet, very large E-values (maybe 50
orders of magnitude higher) for sequences that still share some stretches of sim-
ilarity with the model and little sampling of the E-value space in between (e.g.
see Supplementary File 1; supplementary files for this article are also available
via http://mendel.bii.a-star.edu.sg/SEQUENCES/ProblemDomains-JanusEvalue).
In contrast to the vast changes in E-values, the respective scores are not so different.
Apparently, a number of factors appear responsible for this behavior. For exam-
ple, the non-redundant database provides limited sequence sampling, the param-
eters of the EVD are not well estimated and this is aggravated in cases of long
domains.

There is also a technical reason that we wish to analyze in this article: For our
previous work,26 we needed to compute sequence segment-based contributions to
the total HMM-derived score. As a control, we tried to reproduce E-values generated
with HMMER2 over a wide range of conditions. Surprisingly, we found a systematic
divergence in E-values for large scores (Fig. 1). When checking the HMMER2 code,
we stumbled onto the switching between two statistical models for E-value genera-
tion (routine P -Value in “Mathsupport.c”, see Supplementary File 2, comments in
red). In essence, two p-values are concurrently calculated in this piece of code; one
from the extreme-value distribution (EVD) and another from the logistic function.
However, the smaller p-value is always selected for the final computation of the E-
value (p-value multiplied by the size of the sequence/domain database). Thus, for
some scores, E-values are calculated with an EVD; for other scores beyond a certain
log odd score Sbreakpoint (see methods for its computation), a logistic function is
applied (Fig. 1). Since both functions used for E-value computation are monotonous,
the breakpoint represents a point of switching between statistical models.
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Fig. 1. Divergence plot of E-values with respect to the EVD (extreme value distribution) and
logistic function beyond the breakpoint score Sbreakpoint. For majority of the Pfam release 23
domain models in global-mode hmmpfam/hmmsearch mode, the logistic function will supercede
the EVD for their E-value calculations beyond a breakpoint [see Eq. (8)] along the positive score
axis. Furthermore, some of these domains contain a critical region bounded by the lower and
upper score [Eqs. (13) and (14)] where hits in these regions are contradicted by the two statistical
models.

The inclusion of the logistic function into the E-value computation raises sev-
eral issues for practical (automated) sequence annotation and theoretical justifi-
cation. From a practical perspective, there will be a range of scores [the interval
(Slower, Supper), Fig. 1] for a number of domain models where some hits look insignif-
icant based on EVD (given, for example, the threshold of 0.1) but become significant
in the present HMMER2 framework since the logistic function produces more exag-
gerated E-values. From a theoretical perspective, having a hybrid of two statistical
models (EVD and logistic function) complicates statistical inference of sequence
similarity for homology. The comparability of E-values for hits matching the same
sequence region becomes problematic since the E-values might be generated under
two different statistical models. Furthermore, the logistic function as a statistical
model to measure sequence similarity has not been justified fundamentally. The
subsequent sections will address these issues in greater detail.

2. Results

2.1. The overwhelming majority of domains in Pfam (release 23)

switch between EVD- and logistic function-derived E-values

in HMMER2 searches depending on score value

We computed the critical score Sbreakpoint for the Pfam domain models in release 23,
the last version dedicated to HMMER2 [see Sec. 4, especially Eqs. (8) and (10)]. For
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this purpose, the respective EVD parameters λ and µ [which are in fact search-mode
dependent and are different for the ls- (global) and fs- (fragment) domain searches]
were extracted from the Pfam HMMs.

We found that, for the ls- (global-) mode, an overwhelming majority (10,337
out of 10,340) of domain models in Pfam has a positive breakpoint [and λ � log 2,
see Eq. (8)]. In these cases, the EVD is used for E-value computation for scores
below the breakpoint and is substituted by the logistic function for larger scores, a
function with considerably steeper deceleration in E-value (Fig. 2).

The only exceptions with a negative breakpoint solution are PF02095.7
(Extensin-like protein repeat), PF06049.4 (Coagulation Factor V LSPD Repeat)
and PF07391.3 (NPR nonapeptide repeat) (their λ > log 2; see Fig. 2). These three
cases are special since the logistic function always delivers a P -value that is larger
or equal to the P -value from the EVD. Thus, the EVD is the only statistical model
used for E-value calculation and the issue of switching statistical models is not
relevant for these three models.

For the fs-mode, there are 2,136 domains with negative breakpoint (λ > log 2)
and another 415 domains with a λ ≈ log 2 (between 0.6849 and 0.6931) resulting in

Fig. 2. Plots of EVD (extreme value distribution) and logistic function for a domain with parameter
λ < log 2 and λ > log 2 respectively. Based on the upper figure, for domains with EVD parameter
λ < log 2, the EVD (in red) and logistic function (in black) will cross over at some point on the
positive score axis. We defined this as the breakpoint. When this happens, the E-value calculations
will be based on the logistic function which is more aggressive in nature. On the other hand, for
domains with EVD parameter λ > log 2, cross-over between the EVD and logistic will not occur.
Thus for these models, the E-value calculations are dependent only on the EVD (see lower figure).
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a breakpoint with very large positive score value. In both cases, the EVD is below
the logistic function over the full range and the only statistical function that is used
for calculating E-values. For the remaining 7,789 domain models (λ < log 2), all
switch from the EVD to the logistic function as score increases beyond a positive
breakpoint.

2.2. Hundreds of domains in Pfam (out of 10,340 in release 23)

have a score interval with conflicting EVD/logistic

function-derived E-values based on global-mode HMMER2

searches

The switching between statistics for E-value calculation remains non-critical
from the annotation point of view if the E-value corresponding to Sbreakpoint is
lower than the E-value threshold used for deciding true domain model hits (here
and throughout this work, the threshold is 0.1, the value recommended by Sean
Eddy in the manual provided with HMMER2). In cases where the breakpoint gen-
erates an E-value that is larger than the established threshold, a critical region
(Slower, Supper) [Eqs. (13) and (14)] exists. More specifically, if a hit is being flagged
significant by the EVD, it is also significant based on the logistic function since the
latter produces a more extreme E-value with the caveat that the error measure (i.e.
E-value) becomes more impressive (Fig. 1). Meanwhile, the converse argument is
not true. Annotation decisions based on the logistic function may result in an under-
estimation of false-positive hits since more hits become insignificant when evaluated
by the EVD. This issue is relevant for automated E-value guided extrapolations in
annotation pipelines.

Figure 3 depicts the histogram of breakpoint E-values (in logarithmic scale) for
all domain models in Pfam release 23 based on global-mode searches. The result is
influenced by the size of the database [Eq. (11) in Sec. 4] and the cases of “hmmp-
fam” (with database size equal to the number of models) and “hmmsearch” (with
database size equal to the number of sequences in the non-redundant database)
should be distinguished. To recall, both EVD and the logistic function give the
same E-value at the breakpoint.

In the “hmmpfam” mode, we find that the median E-value in Fig. 2 is in the
order of 1.e-7. In total, 185 models have a critical score Sbreakpoint corresponding to
an E-value larger than 0.1 (Fig. 3 and see Supplementary File 3 for their list) and,
hence, these models give rise to the critical region (Slower, Supper). When tested
with all query sequences from the non-redundant database (downloaded on 5th
April 2010, n = 10,818,955), we found that, out of the 185 models, this region
is sampled by actual sequences in 145 models and, on average, 24.4% of all hits
with E-value below 0.1 (measured by the logistic function) belong to that interval.
In the “hmmsearch” mode, we used the same non-redundant database and found
1,748 domain models with Sbreakpoint corresponding to an E-value above 0.1 (Fig. 3
and as a list in Supplementary File 3). Not surprisingly, the 185 domains from the
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Fig. 3. Histograms of breakpoint E-values from global-mode hmmpfam/hmmsearch on Pfam
release 23. The figure above depicts the histogram of log E-values of breakpoints for global-mode
hmmpfam of Pfam release 23. In this case, the database size is 10,340. At an E-value of above
0.1, 185 Pfam models contain the critical region where the logistic function suggests the hits as
being significant, yet the EVD says otherwise. Similarly, the figure below depicts the histogram of
the log E-values of breakpoints for global-mode hmmsearch where the database size is 10,818,955.
Given an increase in database size, more Pfam models are expected to contain the critical region
even at the same E-value cutoff. In this case, this number increased to 1,748.

“hmmpfam” case form a subset of the 1,748 domains in the “hmmsearch” case. The
principal difference between the two search modes is the size n of the database [see
Eqs. (11)–(14) in Sec. 4]. As the database size increases over time, more domains
are expected to acquire a critical region. The number of domains with a critical
region depends on the database size. Thus, in these cases, an automated, E-value
guided decision making procedure would be affected by the change of the statistics
for error estimation.

Alternatively, a so-called gathering score, an expert-defined score threshold with
the lowest score of a known good hit without known false-positives with higher
score (at the time of model creation) is advised to decide between good hits and
false matches. It should be noted that, for 37 out of the 185 domain models (in
the “hmmpfam“ mode) and 66 out of 1,748 domain models (in the “hmmsearch”
mode), the gathering score is within the respective critical regions. Also, for 19
out of 185 (in the “hmmpfam” mode), their gathering scores are even less than
Slower. In the “hmmsearch” mode, this is the case for 1,651 domain models out of
the respective 1,748. In the case of automated annotation assignment based on the
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gathering score approach, the accompanying E-value would be computed via the
EVD up to the breakpoint and via the logistic function for scores above Sbreakpoint.
Thus, using gathering scores does not ensure calculation of E-values with one and
the same statistical model.

In contrast to the global-mode searches, switching between statistical models is
not an issue for the fragment-mode searches. As a trend, the parameter λ for frag-
ment mode is larger than that of the global mode. This gives rise to larger break-
points that, in turn generate smaller P - and E-values. Though switching between
EVD and logistic function still exists for nearly 80% of all domain models, the larger
breakpoints shift the switch into a region where both EVD and logistic function dive
below the E-value threshold of 0.1. Thus, the issue is of no practical relevance here,
although, of course, the logistic function generates considerably smaller E-values
than the EVD in this region.

2.3. Some examples of likely false-positive hits with only logistic

function-derived E-value support in the hmmpfam

global-mode search

Since the logistic function-derived E-values more optimistically evaluate the signif-
icance of a domain model hit, we especially searched for sequence examples that
are supported by the E-value derived from the logistic function but not from the
one calculated with the EVD approach. We wanted to know whether this discrep-
ancy would lead to likely annotation errors only supported by the logistic function-
derived E-value in an automated mode. Indeed, such examples do exist.

For the beginning, we focused our search on domain models with 3D structural
support. To further reduce the number of domain model hits for manual screen-
ing, we first also required that the score of such sequence examples was below
or close to the respective gathering score of the domain model, hereby following
the assumption that all larger-score hits are likely correct. At the stage of manual
handling, we evaluated the alignment quality (especially, of the hydrophobic pat-
tern) and the taxonomic diversity of the sequences with the potential hit (domain
architectures that occur just for a single sequence more likely indicate false match-
ing). Further, function contradiction of the apparently false-positive hit overlapping
with a more significant domain hit provided further evidence for the conclusion.
Exemplary results from this search are provided in Table 1 (listed with ascending
entry number) and Fig. 4 (the respective alignments are shown in Supplementary
File 4).

Sequence XP 001373560.1 appears to be a sugar transferase; yet, the cytochrome
B559 domain (PF00283.11, from photosystem II) hits into the sequence providing
a function conflict. The next sequence (ZP 01450808.1) contains a seryl-tRNA syn-
thetase domain but this annotation is conflicted by another domain (PF00627.23
UBA, an ubiquitin associated domain) at a lower significance. Similarly, the ABC
transporter domain of sequence YP 796932.1 is also in conflict with a domain
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Fig. 4. Domain architecture of selected likely false-positive hits (detected in the hmmpfam mode).
The illustrations refer to accession numbers and descriptions in Table 1.



January 28, 2011 15:38 WSPC/185-JBCB S0219720011005264

The Janus-Faced E-Values of HMMER2 189

hit (PF01402.13 RHH 1, a Ribbon-helix-helix protein of copG family) of lower
significance.

The next two examples of an isolated hemerythrin domain (actually half of
the domain is encoded in PF01814.5; thus, two subsequent hits are required) in
XP 391082.1 (besides the S15 ribosomal domain) and in XP 781670.1 (hitting two
structural helices of a kinase domain) are clearly also false positives since the other
domain half cannot be placed into the sequence. Similarly, the YP 233518.1, a
sporulation factor, has an isolated ACT (PF01842.17) hit when two subsequent ones
are required for the full domain and this hit conflicts with a NACHT/PF05729.4
domain.

YP 001633696.1 is an example of a function conflict, a methyltransferase with a
false-positive endonuclease domain (PF01844.5) hit. To note, the respective align-
ment has a large gap including the 310-helical segment in front of a β-strand.
Finally, the bacterial pre-peptidase (C-terminal domain, PF04151.7) should be
observed in concert with its N-terminal; yet, its isolated hit is a false-positive both
in YP 433983.1 (a fibronectin) and in NP 521905.1 where it covers the boundary
region of two other neighboring domains (the strong hits of FlgD/PF03963.6 and
DUF2271/PF10029.1).

2.4. More examples of likely false-positive hits with only logistic

function-derived E-value support in the hmmsearch

global-mode search

The following exemplary false-positive sequences were first isolated by hmmsearch
runs and then re-annotated via hmmpfam (see Table 2 and Fig. 5, alignments are
provided in Supplementary File 5). It should be noted that all these examples
produce formally impressive E-values since hmmsearch (and hmmpfam) routes the
score into the logistic function routine; yet, these examples would escape any atten-
tion if only the EVD-based E-value calculation would be applied. For selection of
the examples, we applied criteria similar to the ones in the previous section.

The first example, the sequence NP 001146906.1 is clearly an apurinic
endonuclease-redox protein. Nevertheless, the domain SAP (PF02037.19) has a
single, apparently significant but false-positive hit in this sequence; it should be
noted that two of such hits would be required for a full SAP domain. Though
its hmmpfam annotation includes an additional insignificant SAP domain (that
overlaps with the true hit of the “Exo endo phos” domain model PF03372.15), its
overall score/E-value is made significant artificially by the logistic function.

In the case of sequences YP 002512543.1 and ZP 05026152.1, both are serine/
threonine protein kinases. They have a single, weak HEAT PBS domain hit
(PF03130.8, found in phycobilisomes (PBS) that are peripherally attached to the
photosynthetic membrane). In the hmmpfam mode though, there is a large number
of such hits that add up for an impressive E-value. Nevertheless, they are false-
positives since they provide a function contradiction.
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Fig. 5. Domain architecture of selected likely false-positive hits (detected in the hmmsearch mode).
The illustrations refer to accession numbers and descriptions in Table 2.
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Next, the 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, ZP 01993497.1
has an apparently significant, nevertheless false Secretin N hit (PF03958.9, the
Secretin N domain hits should occur in tandem and there is a function mismatch,
too) which was expectedly more significant in the hmmpfam mode. Please note the
large difference in E-value: 1.8e-6 for the logistic function and 0.38 for the EVD.

The next two sequences XP 001638172.1 and ZP 03700647.1 (a scramblase and a
ribosomal protein) hit a Rho N domain (PF07498.4) at their C-terminus (when the
N-terminal should be expected) without the Rho RNA bind domain (PF07497.4)
and, hence, suggest function contradiction.

Finally, ZP 03708976.1 is a spore coat protein H with a single FIVAR domain
hit (PF07554.5, two FIVAR domains are required) and, again, its hmmpfam
score/E-value is artificially exaggerated due to the inclusion of two insignificant
FIVAR domain hits.

3. Discussion

3.1. EVD as the correct statistic to evaluate the significance

of sequence alignments

The question of statistical significance of an alignment between two biomolecular
sequence segments with reference to a user-defined scoring scheme (or of a sequence
and a profile) has been the center of attention within the computational biology
community for many decades.27–29 There are two principal ways of approaching the
problem — by generating databases of random sequences or by deriving closed form
expressions for the asymptotes of the statistical distribution. The most remarkable
result of this research is the finding that an extreme-value distribution is the statistic
that characterizes the significance of local ungapped alignments.30,31

On this basis, BLAST32 has become the first sequence similarity search tool
with statistical significance estimation of hits via E-values and, for the first time,
it became possible to objectively assess the validity of generated alignments. It
should be noted that there is some dependence on the monomer composition in the
sequences; the distribution changes for biased compositions what can be corrected
for with some modifications.33–37 From the practical point of view, suppression
of sequence regions with biased composition or simple repeats before submis-
sion to sequence similarity searches is still the better alternative since it provides
improved sensitivity. In this way, false-positive matches due to biased regions are
a priori excluded.8,26

3.2. Cause of divergence in HMMER2 E-values from the EVD

distribution and the issues of E-value generation by the

logistic function

The HMMER package does make use of the improved scientific understanding of
significance estimates for profile-sequence matches. The EVD is included as an
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option for computing E-values. In addition, a simpler formulation with the logistic
function (called “sigmoid” by Sean Eddy on page 48 of the User Guide for HMMER2
from October 2003) is used. In the comment lines of the HMMER2 source code
(mathsupport.c, see Supplementary Fig. 1), the EVD is called the tighter bound.
Thus, the creator of HMMER2 considered that the jumping between two statistical
models has no real practical importance since, EVD-based E-values will be used as a
rule. As we know now, this is indeed true for the fragment mode both in hmmsearch
and hmmpfam. Even if there is a region where the logistic function-based E-values
are smaller than those calculated with EVD (for about 75% of all models, such
regions do exist at large positive breakpoints Sbreakpoint), this happens only in
regions with very large scores where both statistical models generate E-values below
0.1.

Surprisingly, this is different for the global mode. As a trend, the parameters
λ of the EVD are smaller for the global mode than for the fragmented mode;
thus, there are more cases of domain models for which switch points Sbreakpoint

correspond to sufficiently low scores so that they can give rise to critical score
regions [see Sec. 4, Eq. (12)]. In Tables 1 and 2 (see also Figs. 4 and 5), we provide
some examples that, for the global mode, the switching between statistical models
indeed influences annotation results. Of course, all false-positive hits of this kind
can be suppressed by manual intervention. Yet, this switching from the EVD to the
logistic function is a cause of systematic errors in an automated sequence annotation
system.

To note, the sensitivity of the domain model (measured as steepness of decrease
of E-values for growing scores) is dependent on the EVD parameter λ. For scores
sufficiently large (where es log 2 � 1), the logistic function mimics an EVD with
parameters µ = 0 and λ = log 2. Hence, for those Pfam models with the switching
to the logistic function, their final λ after the switch are fixed at log 2. In addi-
tion, since global models on average have smaller switch points Sbreakpoint than
fragment ones (42 versus 197), all global models (except for PF02095.7, PF06049.4
and PF07391.3) adopt the forced fed λ = log 2 relatively early on the score axis
discarding their model-specific λ. Taken together, it is not surprising that the
global Pfam models are reportedly more sensitive than the fragment mode mod-
els despite their gentler EVD parameters of λglobal ∼ N(0.191,0.068) (normal
distribution with mean and standard deviation in parentheses) as compared to
λfragment ∼ N(0.668,0.051).

3.3. Validity of the logistic function in HMMER2 to evaluate

the significance of sequence similarity

Essentially, it appears to us that there is no clear reason why a logistic (or “sig-
moid”) function should be included into the E-value calculation routines other
than for cosmetically increasing the sensitivity of the domain models. This is espe-
cially true for domain models that generate lower scoring hits in the global mode.
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To emphasize, the domain model parameters generate, as a trend, lower scores in
the global mode compared with the fragment mode (arithmetic averages of the µ

parameters over all domain models in Pfam release 23 result in −149.1 and −10.0
for the global and fragment modes respectively whereas the corresponding medians
are −110.9 and −10.0). Thus, there is no clear advantage visible from the practical
point of view.

For high scores of hits that are anyway significant, the logistic function cre-
ates the impression of excessive significance by creating E-values of several orders
of magnitude lower than that of the EVD. We have seen that, in the twi-
light regions for some domain models, the logistic function-based E-values sup-
port a confidence in hits that is unfounded. Maybe, it was thought in the first
years of HMMER that EVD parameters would not be readily available for all
domains and, in these cases, the logistic function could supply some rough E-value
substitute.

And there is also no theoretical argument in support for the jumping between
statistical models. As the distribution of a sum of independent, identically
distributed random variables is normally distributed, the maxima of indepen-
dent, identically distributed random variables are extreme-value distributed. Not
surprisingly, optimized scores of matches between unrelated random sequences
follow the EVD. The EVD has been demonstrated to reliably estimate signifi-
cance of sequence matches both via theoretical derivation and numerical exper-
iments.30,31 There is no body of theory behind the logistic function for this
purpose.

In contrast to EVD, the logistic function is symmetrical with regard to low and
high scores. The rationale is straightforward; given the same score, the area under
the curve for the right-hand side of the logistic function is smaller than that of the
EVD since it does not extend as far into the infinity score axis, thus always resulting
in a smaller P -value. Conversely, the area under the curve for the left-hand side
of the EVD is smaller than that of the logistic function since the total area must
add to one. As a result, the E-value computation in HMMER2 is essentially based
on a hybrid p-value distribution composed of the left-hand side of an EVD and the
right-hand side of a logistic function.

It is known that the difference of two maximum Gumbel distribution (Type I
EVD) equates to the logistic function.38 Thus, insisting on the relevance of the logis-
tic function as statistic requires arguments for justification of a second EVD. This
appears a problematic endeavor. Finally, using a hybrid distribution model (switch-
ing from EVD to logistic function with increasing score) without clear resolution
of the fundamental problems questions the comparability of E-values computed for
different Pfam models over the same sequence region. A statistician might con-
sider the hybrid distribution a betrayal of pure tenets; yet, we wish to emphasize
that the creator of HMMER has rightfully not seen this being a big issue since,
indeed, the fragment mode is practically unaffected.
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3.4. About the domain model-specific divergence between the EVD

and the logistic function

With reference to Fig. 1, it appears of interest to ask how the angle ζ changes
depending on the domain model-specific properties of the EVD. Essentially, the
angle ζ is a measure to which extent the E-value deviates from the “truth”. Ana-
lytically, the relationship is given by Eq. (15) in Sec. 4; graphically, the relationship
between the angle ζ and the EVD parameter λ is presented in Fig. 6 for the 185
cases found for the “hmmpfam” global-mode search. Inspection shows that a group
of 161 domains (all having less than 110 positions) cluster at the upper right of the
graph. By the way, all of our examples in Tables 1 and 2 are from those domains.

Strikingly, there is an outlier group of 24 domain models with λ < 0.05 and ζ <

−15◦ (see Table 3). These are very long models (between 640 and 1,460 alignment
positions) that clearly contain more than one actual domain. Score-wise, the most
significant true hits of these models are strongly separated from their best matches
in other sequences (see hmmpfam outputs in Supplementary File 6 and also the
example in Supplementary File 1), mostly, without any sampling of the intermediate
region (small λ means small spread in scores). It appears that, in these cases, the
domain model essentially memorizes the seed alignment and cannot extrapolate into
the sequence space. Due to the insufficient sampling, the EVD parameters cannot
be well determined from the empirical distribution of best scores in the sequence
database (i.e. the database does not provide a good estimate for random sequence

Fig. 6. Dependence of the angle ζ on the EVD parameter λ. The data involves 185 domain models
that have a critical region in the hmmpfam global search mode. The analytical relationship is
provided with Eq. (15) (Sec. 4). Twenty-four domain models with λ < 0.05 and ζ < −15◦ are
clear outliers.
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Table 3. Models with small λ(λ < 0.05) and large negative ζ(ζ < −15◦).

Accession Description

PF04730.4 Agrobacterium VirD5 protein
PF02029.7 Caldesmon
PF00311.9 Phosphoenolpyruvate carboxylase
PF02691.7 Vacuolating cyotoxin
PF10433.1 Mono-functional DNA-alkylating agent methyl methanesulfonate
PF08377.2 MAP2 Tau projection domain
PF06933.3 Special lobe-specific silk protein SSP160
PF04094.6 Protein of unknown function DUF390
PF05567.3 Neisseria PilC protein
PF05483.4 Synaptonemal complex protein 1 SCP-1
PF03971.6 Monomeric isocitrate dehydrogenase
PF03344.7 Daxx Family
PF07111.4 Alpha helical coiled-coil rod protein HCR
PF05955.3 Equine herpesvirus glycoprotein gp2
PF07218.3 Rhoptry-associated protein 1 RAP-1
PF04147.4 Nop14-like family
PF03157.5 High molecular weight glutenin subunit
PF03429.5 Major surface protein 1B
PF09731.1 Mitochondrial inner membrane protein
PF02057.7 Glycosyl hydrolase family 59
PF05474.3 Semenogelin
PF04931.5 DNA polymerase phi
PF07217.3 Heterokaryon incompatibility protein Het-C
PF06375.3 Bovine leukaemia virus receptor BLVR

matches) and, hence, a revision of the long domain models might be advisable in
context of the global-mode search.

The results for the 1,748 domain models that were found in the “hmmsearch”
global-mode search are similar. In total, 1,697 models have ζ > −15◦ and λ > 0.05.
Their lengths are all less than 400 positions. The outlier group of 51 domains with
ζ < −15◦ and λ < 0.05 has domain lengths between 640 and 1,547 positions.

In the Supplementary File 1, the global-mode “hmmsearch” result for Pfam
domain model PF00311.9 (Phosphoenolpyruvate carboxylase with 960 positions)
is shown. Its breakpoint occurs at score 11.7 with the corresponding E-value of
3.03. Beyond the breakpoint with increasing score, the E-value is returned by the
logistic function as an exaggerated value. The top hit Q01647.1 with the score of
2796.7, the one with the largest score, has an EVD E-value of 8e-11 scaled all
the way down to the E-value of 0 (a value smaller than the smallest represented
positive number, certainly <1.e-300) by the logistic function. Thus, the change in
order of magnitude is extremely big and solely caused by switching the statistical
model.

On the other hand, we also have hits with EVD E-value >0.1 that show stretches
of impressive sequence matches but deemed as insignificant under the EVD statis-
tical model (for example, YP 003108745.1). Given the length of this particular
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domain model, the global-mode can drastically under-sample random sequence
matches and, thus, creates extremely small λ (<0.05). This leads to the under-
estimation of significance for those apparently good hits.

For these long domain models, the EVD statistical model can generally under-
estimate the significance of sequence matches. Yet ironically, it exaggerates the
significance for hits with larger scores. In hindsight, the lack of sequence sampling
in between the extremes of E-values is just an illusion that is created by the switch-
ing between two statistical models (EVD and logistic function).

3.5. About the E-value computation in HMMER3

The code of HMMER3 is completely new compared to HMMER2 and this includes
also the E-value computing routines that are based solely on EVD-type functions. In
our testing with a variety of domain models from Pfam release 24, we did not see any
breakpoint as described in Fig. 1. Interestingly in HMMER3, the λ is predetermined
by log 2 + 1.44

hN where h is the average relative entropy per match state emission
distribution, typically about 1.8 while N is the length of the query model, typically
about 140.22 Apparently, all Pfam models in release 24 have λ > log 2. Indeed, the
distribution of λ for Pfam release 24 is λ ∼ N(0.711,0.0008) as calculated by us. It
should be noted that this normal distribution is quite close to that of the fragment
mode parameters in Pfam release 22 and 23 [N(0.668,0.051) for both cases] whereas
the mean value for λ in the global mode is much lower. It remains open to which
extent domain length and sequence space sampling by the database will influence
the EVD parameters for the global mode (glocal as coined by Sean Eddy, p. 4 in
Ref. 22) and whether a global mode option might be useful for further versions of
HMMER.

The choice for an almost constant, high λ close to the magic value log 2 for
fragment mode models is based heavily on the work by Bundschuh, Milosavljević
Yu, Hwa et al.39–42 that both Viterbi scores of Gumbel distribution and Forward
scores of exponential function has a fixed λ = log z where z is the base of the
logarithm used of the log-odd scoring system. It should be noted that, in the case
of λ > log 2, the EVD is always below the respective logistic function and no
switching would occur (Fig. 2).

Due to larger λ, the release 24 Pfam models are theoretically expected to have
steeper E-value decrease for growing score (thus, higher sensitivity) than those
from Pfam release 23 where most of the models (10,337 for global mode, 7,789
for fragment mode) have λ < log 2. Ironically, the median gathering threshold for
Pfam release 24 is lower than that of release 23 local models (21.4 versus 25),
suggesting that the threshold needs to be lowered for comparable sensitivity. Also,
it remains to be seen whether it is wise to adopt almost the same λ for the all Pfam
release 24 models given that sequence space is usually biased. Sean Eddy himself
has noted that some Pfam models (e.g. Ribosomal L12 and XYPPX) have a λ that
is significantly different from log 2 (p. 7 in Ref. 22).
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Time will provide arguments whether HMMER2 will finally be substituted by
a version of HMMER3 and whether the list of discoveries made with HMMER3
can rival that of its predecessor. Since HMMER2 and HMMER3 generate different
hit lists, it might become difficult to reproduce earlier publications, for example
those on the evolutionary history of particular domains. The testing of the relative
performance is a piece of laborious research that goes clearly beyond the scope
of this article. Such a comparison has to verify whether differences in sensitivity
between HMMER2 and HMMER3 are truly the result of changes in the respective
theoretical frameworks or just a profane consequence of parameter adjustments
such as gathering scores for the respective domain model releases. Regardless of
the difficult theoretical questions associated with significance assessment of domain
model hits, it seems that, so far, nothing can substitute for the experienced eye of
a sequence-analytic researcher in evaluating the biological relevance of predictions
before they are proposed for experimental follow-up.

4. Materials and Methods

4.1. Derivation of the breakpoint point score for a domain model

In the following, we rely on the derivation of significance criteria provided by Sean
Eddy in his HMMER2 manual from October 2003 (pp. 47–50). According to the
Bayes’ theorem, the posterior probability of the null hypothesis N given the profile
HMM (hidden Markov model) M and data D (the score of the sequence hit) is
given as

P (N |D) =
P (D|N)P (N)

P (D|M)P (M) + P (D|N)P (N)
. (1)

Assuming that prior probabilities are equal probable [i.e. P (M) = P (N)], the
posterior null probability can be simplified to

P (N |D) =
P (D|N)
P (D|M)

P (M |D), (2)

where P (M |D) = 1 − P (N |D).
On the other hand, the probability of type I error for pair-wise alignment scores

of a given HMM is denoted by P (S ≥ s), where s is the log odd score of a particular
alignment. Hence, the posterior null probability is related to the type I error by

P (S ≥ s) =
P (D|N)
P (D|M)

P (M |D). (3)

The first part of the right side is a log-odd ratio that, following the HMM procedure,
is calculated as

P (D|N)
P (D|M)

= e−s log 2. (4)
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For P (M |D), a sigmoid-type dependency between 0 and 1 is assumed and, given
the form of Eq. (4), the simple arithmetic expression was selected by Sean Eddy as
convenient:

P (M |D) =
es log 2

1 + es log 2
. (5)

This results in a logistic-function-type expression for

Plogistic(S ≥ s) =
1

1 + es log 2
. (6)

Alternatively, the significance can be estimated via an EVD. Indeed, if we assume
the scores of an HMM positioned over all segments of a sequence being normally
distributed, their maxima collected from all sequences in the database are extreme-
value distributed.43 In this case, the arithmetic form is the Gumbel (maximum)
distribution and is given as

PEVD(S ≥ s) = 1 − e−e−λ(s−µ)
=

e−λ(s−µ)

1!
− e−2λ(s−µ)

2!
+

e−3λ(s−µ)

3!
− · · · (7)

Both functions (6) and (7) are monotonous; yet, the logistic function approaches
unity typically at smaller s than the EVD. Thus, there is a breakpoint Sbreakpoint =
s′ that occurs at PEVD(S ≥ s′) = Plogistic(S ≥ s′). Its numerical value s can be
found by solving the equation

e−λ(s′−µ)

1!
− e−2λ(s′−µ)

2!
+

e−3λ(s′−µ)

3!
− · · · =

1
1 + es′ log 2

.

For sufficiently large, positive values of s′ (i.e. s′ � 0 and s′ > µ), all terms
except for the first one on the left side can be omitted (as well as the unity in the
denominator on the right side) and the equation is approximated by

e−λ(s′−µ)

1!
=

1
es′ log 2

and
eλµ

eλs′ =
1

es′ log 2
,

resulting in

s′ =
λµ

λ − log 2
. (8)

For the remaining case of negative and sufficiently large values of s′ (i.e. s′ � 0),
we derive the approximated equation for the breakpoint from the following form

1 − e−e−λ(s−µ)
=

1
1 + es′ log 2

. (9)

Note that the expression es′ log 2 approaches zero with negative s′ (its value is
denoted by c below) and, hence, the right-hand side approaches one. Therefore,
Eq. (9) can be approximated by

1 − e−e−λ(s−µ)
= (1 − c) and λ(s − µ) = − log(− log(c)),
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resulting in

s′ = µ − log(− log(c))
λ

. (10)

To prevent undefined expressions involving log in practical calculations with
Eq. (10), c is set at 10−5. Note that all the values µ in Pfam models, whether
for global or fragment searches, are negative. Hence, Eq. (8) gives a positive result
while Eq. (10) delivers a negative value for s′ as expected.

In the routine “PValue” from the source file “Mathsupport.c” (see Supplemen-
tary File 2), HMMER2 selects the smaller (called P below) of the two values Plogistic

and PEVD for further computation of an E-value via

E(s) = nP (s), (11)

where n is the database size. Thus, P -value calculation switches from the EVD to
the logistic function for scores above Sbreakpoint. Therefore, E-values decrease in a
more pronounced manner with growing score than could be expected from the EVD
(Fig. 1).

4.2. Critical region of E-value ranges where insignificant

EVD-derived E-values meet significant logistic

function-derived E-values

We calculated Sbreakpoint for the global search mode that forces complete domain
model hits inside query sequences (the so-called ls-mode) both for the hmmpfam
(n = number of Pfam models =10,340 for Pfam release 2318,19) and hmmsearch
[n =number of sequences in the non-redundant database =10,818,955 (NR from
5th of April 2010)] HMMER2 applications.

Conclusions with regard to the validity of HMM hits in query sequences can
be made in two ways. On the one hand, so-called gathering scores are applied
that correspond to lowest score values of known true hits without false hits with
higher score. In such a scheme, significance estimates are essentially not necessary.
Alternatively, the goodness of HMM hit is evaluated with critical E-value thresholds
of acceptable false-positive prediction. The E-value threshold recommended by Sean
Eddy in his HMMER2 manual from October 2003 (p. 43) is 0.1. It should be noted
that, by far, Sbreakpoint values for most HMM models in Pfam correspond to E-values
clearly below 0.1 in any tested search HMMER2 regime. Thus, switching between
the two statistical functions has no effect on the significance conclusion; yet, it adds
to the cosmetics of the results by creating impressively low E-values for many good
hits.

Unfortunately, there are some domain models for which Sbreakpoint corresponds
to an E-value considerably larger than 0.1 (Fig. 1). In these cases, there is a critical
score interval (Slower, Supper) excluding the boundary with the condition

∀ s ∈ (Slower, Supper) : EEVD(s) > 0.1 ∧ Elogistic(s) < 0.1. (12)
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Thus, it can happen for some scores that an E-value calculated with EVD is not
significant but that with the logistic function is.

The limiting score Supper can be found by solving the EVD [Eq. (7)] for E =0.1
as follows:

0.1
n

= 1 − e−e−λ(Supper−µ)

and

Supper = µ − 1
λ

log
[
− log

(
1 − 0.1

n

)]
. (13)

Similarly, the lower limit score Slower results as argument of the logistic function
[Eq. (6)] for E =0.1

0.1
n

=
1

1 + eSlower log 2

and

Slower =
1

log 2

[
log

(
1 − 0.1

n

)
− log

(
0.1
n

)]
(14)

With reference to Fig. 1, we can determine the angle ζ between the two straight lines
representing the EVD and the logistic function at their crossing point Sbreakpoint

via

ζ = arctan
[
log(n(1 + exp(Supper · log 2))−1)

Supper − Sbreakpoint

]
− arctan

[ −1
Supper − Sbreakpoint

]
.

(15)

Following Eqs. (8) and (13), ζ depends mainly on λ and is, as a trend, linearly
related to it (Fig. 6).

Supplementary Materials

Additional data files for this article are also available via http://mendel.bii.a-
star.edu.sg/SEQUENCES/ProblemDomains-JanusEvalue.

Supplementary File 1

Hmmpfam output of the Pfam domain PF00311.9 (Phosphoenolpyruvate carboxy-
lase) when searched against the non-redundant database. We used the command
“hmmsearch –Z 10,340” to annotate sequences with just this particular domain and
to have E-values that equal to those searched with hmmpfam. The results contain
true hits with extremely low E-values as well as good hits with large E-values. The
E-value space in between the extremes is undersampled.

Supplementary File 2

Source code of “Mathsupport.c” in HMMER2 package with additional commentary
lines.



January 28, 2011 15:38 WSPC/185-JBCB S0219720011005264

202 W.-C. Wong, S. Maurer-Stroh & F. Eisenhaber

Supplementary File 3

Detail information associated to the 185 and 1,748 domain models detected by
global-mode hmmpfam and hmmsearch respectively.

Supplementary File 4

The concatenated HMMER2 outputs of the nine false-positive hits detected by
global-mode hmmpfam as listed in Table 1 and illustrated in Fig. 4.

Supplementary File 5

The concatenated HMMER2 outputs of the seven false-positive hits detected by
global-mode hmmsearch as listed in Table 2 and illustrated in Fig. 5.

Supplementary File 6

The archive (in WinRAR format) of the 24 outlier Pfam domains with small λ and
large negative ζ listed in Table 3.
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